Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38860289

RESUMO

The mucociliary transport apparatus is critical for maintaining lung health via the coordinated movement of cilia to clear mucus and particulates. A metachronal wave propagates across the epithelium when cilia on adjacent multiciliated cells beat slightly out of phase along the proximal-distal axis of the airways in alignment with anatomically directed mucociliary clearance. We hypothesized that metachrony optimizes mucociliary transport (MCT) and that disruptions of calcium signaling would abolish metachrony and decrease MCT. We imaged bronchi from human explants and ferret tracheae using micro-Optical Coherence Tomography (µOCT) to evaluate airway surface liquid depth (ASL), periciliary liquid depth (PCL), cilia beat frequency (CBF), MCT, and metachrony in situ. We developed statistical models that included covariates of MCT. Ferret tracheae were treated with BAPTA-AM (chelator of intracellular Ca2+), lanthanum chloride (nonpermeable Ca2+channel competitive antagonist), and repaglinide (inhibitor of calaxin) to test calcium-dependence of metachrony. We demonstrated metachrony contributes to mucociliary transport of human and ferret airways. MCT was augmented in regions of metachrony compared to non-metachronous regions by 48.1%, P=0.0009 or 47.5%, P<0.0020 in humans and ferrets, respectively. PCL and metachrony were independent contributors to MCT rate in humans; ASL, CBF, and metachrony contribute to ferret MCT rates. Metachrony can be disrupted by interference with calcium signaling including intracellular, mechanosensitive channels, and calaxin. Our results support that the presence of metachrony augments MCT in a calcium-dependent mechanism.

2.
Eur Respir J ; 60(1)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34916262

RESUMO

RATIONALE: The majority of chronic obstructive pulmonary disease (COPD) patients have chronic bronchitis, for which specific therapies are unavailable. Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction is observed in chronic bronchitis, but has not been proven in a controlled animal model with airway disease. Furthermore, the potential of CFTR as a therapeutic target has not been tested in vivo, given limitations to rodent models of COPD. Ferrets exhibit cystic fibrosis-related lung pathology when CFTR is absent and COPD with bronchitis following cigarette smoke exposure. OBJECTIVES: To evaluate CFTR dysfunction induced by smoking and test its pharmacological reversal by a novel CFTR potentiator, GLPG2196, in a ferret model of COPD with chronic bronchitis. METHODS: Ferrets were exposed for 6 months to cigarette smoke to induce COPD and chronic bronchitis and then treated with enteral GLPG2196 once daily for 1 month. Electrophysiological measurements of ion transport and CFTR function, assessment of mucociliary function by one-micron optical coherence tomography imaging and particle-tracking microrheology, microcomputed tomography imaging, histopathological analysis and quantification of CFTR protein and mRNA expression were used to evaluate mechanistic and pathophysiological changes. MEASUREMENTS AND MAIN RESULTS: Following cigarette smoke exposure, ferrets exhibited CFTR dysfunction, increased mucus viscosity, delayed mucociliary clearance, airway wall thickening and airway epithelial hypertrophy. In COPD ferrets, GLPG2196 treatment reversed CFTR dysfunction, increased mucus transport by decreasing mucus viscosity, and reduced bronchial wall thickening and airway epithelial hypertrophy. CONCLUSIONS: The pharmacologic reversal of acquired CFTR dysfunction is beneficial against pathological features of chronic bronchitis in a COPD ferret model.


Assuntos
Bronquite Crônica , Doença Pulmonar Obstrutiva Crônica , Animais , Bronquite Crônica/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Furões/metabolismo , Hipertrofia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Microtomografia por Raio-X
3.
Eur Respir J ; 55(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672759

RESUMO

The mechanisms by which cigarette smoking impairs airway mucus clearance are not well understood. We recently established a ferret model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) exhibiting chronic bronchitis. We investigated the effects of cigarette smoke on mucociliary transport (MCT).Adult ferrets were exposed to cigarette smoke for 6 months, with in vivo mucociliary clearance measured by technetium-labelled DTPA retention. Excised tracheae were imaged with micro-optical coherence tomography. Mucus changes in primary human airway epithelial cells and ex vivo ferret airways were assessed by histology and particle tracking microrheology. Linear mixed models for repeated measures identified key determinants of MCT.Compared to air controls, cigarette smoke-exposed ferrets exhibited mucus hypersecretion, delayed mucociliary clearance (-89.0%, p<0.01) and impaired tracheal MCT (-29.4%, p<0.05). Cholinergic stimulus augmented airway surface liquid (ASL) depth (5.8±0.3 to 7.3±0.6 µm, p<0.0001) and restored MCT (6.8±0.8 to 12.9±1.2 mm·min-1, p<0.0001). Mixed model analysis controlling for covariates indicated smoking exposure, mucus hydration (ASL) and ciliary beat frequency were important predictors of MCT. Ferret mucus was hyperviscous following smoke exposure in vivo or in vitro, and contributed to diminished MCT. Primary cells from smokers with and without COPD recapitulated these findings, which persisted despite the absence of continued smoke exposure.Cigarette smoke impairs MCT by inducing airway dehydration and increased mucus viscosity, and can be partially abrogated by cholinergic secretion of fluid secretion. These data elucidate the detrimental effects of cigarette smoke exposure on mucus clearance and suggest additional avenues for therapeutic intervention.


Assuntos
Desidratação , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Depuração Mucociliar , Muco , Fumar/efeitos adversos , Viscosidade
4.
Am J Respir Cell Mol Biol ; 61(2): 162-173, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30576219

RESUMO

Cigarette smoking is associated with chronic obstructive pulmonary disease and chronic bronchitis. Acquired ion transport abnormalities, including cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, caused by cigarette smoking have been proposed as potential mechanisms for mucus obstruction in chronic bronchitis. Although e-cigarette use is popular and perceived to be safe, whether it harms the airways via mechanisms altering ion transport remains unclear. In the present study, we sought to determine if e-cigarette vapor, like cigarette smoke, has the potential to induce acquired CFTR dysfunction, and to what degree. Electrophysiological methods demonstrated reduced chloride transport caused by vaporized e-cigarette liquid or vegetable glycerin at various exposures (30 min, 57.2% and 14.4% respectively, vs. control; P < 0.0001), but not by unvaporized liquid (60 min, 17.6% vs. untreated), indicating that thermal degradation of these products is required to induce the observed defects. We also observed reduced ATP-dependent responses (-10.8 ± 3.0 vs. -18.8 ± 5.1 µA/cm2 control) and epithelial sodium channel activity (95.8% reduction) in primary human bronchial epithelial cells after 5 minutes, suggesting that exposures dramatically inhibit epithelial ion transport beyond CFTR, even without diminished transepithelial resistance or cytotoxicity. Vaporizing e-cigarette liquid produced reactive aldehydes, including acrolein (shown to induce acquired CFTR dysfunction), as quantified by mass spectrometry, demonstrating that respiratory toxicants in cigarette smoke can also be found in e-cigarette vapor (30 min air, 224.5 ± 15.99; unvaporized liquid, 284.8 ± 35.03; vapor, 54,468 ± 3,908 ng/ml; P < 0.0001). E-cigarettes can induce ion channel dysfunction in airway epithelial cells, partly through acrolein production. These findings indicate a heretofore unknown toxicity of e-cigarette use known to be associated with chronic bronchitis onset and progression, as well as with chronic obstructive pulmonary disease severity.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Glicerol/efeitos adversos , Transporte de Íons , Fumaça/efeitos adversos , Fumar/efeitos adversos , Acroleína/química , Trifosfato de Adenosina/metabolismo , Brônquios/metabolismo , Bronquite Crônica/fisiopatologia , Sobrevivência Celular , Fumar Cigarros , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Progressão da Doença , Eletrofisiologia , Células Epiteliais/metabolismo , Glicerol/metabolismo , Humanos , Espectrometria de Massas , Muco/metabolismo , Nebulizadores e Vaporizadores , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Sistema Respiratório/efeitos dos fármacos , Fatores de Tempo
5.
Am J Respir Cell Mol Biol ; 56(1): 99-108, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585394

RESUMO

Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction may contribute to chronic obstructive pulmonary disease pathogenesis and is a potential therapeutic target. We sought to determine the acute effects of cigarette smoke on ion transport and the mucociliary transport apparatus, their mechanistic basis, and whether deleterious effects could be reversed with the CFTR potentiator ivacaftor (VX-770). Primary human bronchial epithelial (HBE) cells and human bronchi were exposed to cigarette smoke extract (CSE) and/or ivacaftor. CFTR function and expression were measured in Ussing chambers and by surface biotinylation. CSE-derived acrolein modifications on CFTR were determined by mass spectroscopic analysis of purified protein, and the functional microanatomy of the airway epithelia was measured by 1-µm resolution optical coherence tomography. CSE reduced CFTR-dependent current in HBE cells (P < 0.05) and human bronchi (P < 0.05) within minutes of exposure. The mechanism involved CSE-induced reduction of CFTR gating, decreasing CFTR open-channel probability by approximately 75% immediately after exposure (P < 0.05), whereas surface CFTR expression was partially reduced with chronic exposure, but was stable acutely. CSE treatment of purified CFTR resulted in acrolein modifications on lysine and cysteine residues that likely disrupt CFTR gating. In primary HBE cells, CSE reduced airway surface liquid depth (P < 0.05) and ciliary beat frequency (P < 0.05) within 60 minutes that was restored by coadministration with ivacaftor (P < 0.005). Cigarette smoking transmits acute reductions in CFTR activity, adversely affecting the airway surface. These effects are reversible by a CFTR potentiator in vitro, representing a potential therapeutic strategy in patients with chronic obstructive pulmonary disease with chronic bronchitis.


Assuntos
Aminofenóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Depuração Mucociliar/efeitos dos fármacos , Quinolonas/farmacologia , Fumar/efeitos adversos , Acroleína/farmacologia , Sequência de Aminoácidos , Brônquios/patologia , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Mucosa/patologia , Tomografia de Coerência Óptica , Traqueia/patologia
6.
Oxid Med Cell Longev ; 2020: 2908271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587658

RESUMO

Thioredoxin reductase-1 (TXNRD1) inhibition activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) responses and prevents acute lung injury (ALI). Heme oxygenase-1 (HO-1) induction following TXNRD1 inhibition is Nrf2-dependent in airway epithelial (club) cells in vitro. The influence of club cell HO-1 on lung development and lung injury responses is poorly understood. The present studies characterized the effects of hyperoxia on club cell-specific HO-1 knockout (KO) mice. These mice were generated by crossing Hmox1 flox mice with transgenic mice expressing cre recombinase under control of the club cell-specific Scgb1a1 promoter. Baseline analyses of lung architecture and function performed in age-matched adult wild-type and KO mice indicated an increased alveolar size and airway resistance in HO-1 KO mice. In subsequent experiments, adult wild-type and HO-1 KO mice were either continuously exposed to >95% hyperoxia or room air for 72 h or exposed to >95 hyperoxia for 48 h followed by recovery in room air for 48 h. Injury was quantitatively assessed by calculating right lung/body weight ratios (g/kg). Analyses indicated an independent effect of hyperoxia but not genotype on right lung/body weight ratios in both wild-type and HO-1 KO mice. The magnitude of increases in right lung/body weight ratios was similar in mice of both genotypes. In the recovery model, an independent effect of hyperoxia but not genotype was also detected. In contrast to the continuous exposure model, right lung/body weight ratio mice were significantly elevated in HO-1 KO but not wild-type mice. Though club cell HO-1 does not alter hyperoxic sensitivity in adult mice, it significantly influences lung development and resolution of lung injury following acute hyperoxic exposure.


Assuntos
Envelhecimento/patologia , Células Epiteliais/enzimologia , Deleção de Genes , Heme Oxigenase-1/metabolismo , Hiperóxia/enzimologia , Hiperóxia/patologia , Animais , Animais Recém-Nascidos , Cruzamentos Genéticos , Células Epiteliais/patologia , Feminino , Genótipo , Integrases/metabolismo , Pulmão/embriologia , Lesão Pulmonar/enzimologia , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Recombinação Genética/genética , Uteroglobina/metabolismo
7.
Cell Discov ; 22016.
Artigo em Inglês | MEDLINE | ID: mdl-27134758

RESUMO

The elevated lysophosphatidic acid signaling has been causally linked to cancer-associated inflammation and tumorigenesis through upregulation of nuclear factor-κB signaling. However, how this signaling event is regulated has not yet been fully understood. Here we demonstrate that TRIP6, an LPA2 receptor-interacting adaptor protein, functions as a positive regulator of nuclear factor-κB and JNK signaling through direct binding to and activation of the E3 ligase TRAF6. Upon lysophosphatidic acid stimulation, TRIP6 recruits TRAF6 to the LPA2 receptor and promotes lysophosphatidic acid-induced JNK and nuclear factor-κB activation in a TRAF6-dependent manner. TRIP6 antagonizes the recruitment of deubiquitinases A20 and CYLD to TRAF6, thus sustaining the E3 ligase activity of TRAF6 and augmenting lysophosphatidic acid-activated nuclear factor-κB signaling. In contrast, depletion of TRIP6 by TRIP6-specific shRNA or Cas9/sgRNA greatly enhances the association of TRAF6 with A20 and CYLD, and attenuates lysophosphatidic acid-induced muclear factor-κB and JNK/p38 activation in ovarian cancer cells. On the other hand, TRAF6 also regulates TRIP6 by facilitating its binding to nuclear factor-κB p65 and phosphorylation by c-Src. Together, TRIP6 cooperates with TRAF6 to regulate the LPA2 receptor signaling, which may ultimately contribute to chronic inflammation, apoptotic resistance and cell invasion.

8.
Mol Cell Biol ; 34(14): 2635-49, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24820414

RESUMO

14-3-3τ is frequently overexpressed in breast cancer; however, whether it contributes to breast cancer progression remains undetermined. Here, we identify a critical role for 14-3-3τ in promoting breast cancer metastasis, in part through binding to and inhibition of RhoGDIα, a negative regulator of Rho GTPases and a metastasis suppressor. 14-3-3τ binds Ser174-phosphorylated RhoGDIα and blocks its association with Rho GTPases, thereby promoting epidermal growth factor (EGF)-induced RhoA, Rac1, and Cdc42 activation. When 14-3-3τ is overexpressed in MCF7 breast cancer cells that express 14-3-3τ at low levels, it increases motility, reduces adhesion, and promotes metastasis in mammary fat pad xenografts. On the other hand, depletion of 14-3-3τ in MCF7 cells and in an invasive cell line, MDA-MB231, inhibits Rho GTPase activation and blocks breast cancer migration and invasion. Moreover, 14-3-3τ overexpression in human breast tumors is associated with the activation of ROCK (a Rho GTPase effector), high metastatic rate, and shorter survival, underscoring a clinically significant role for 14-3-3τ in breast cancer progression. Our work indicates that 14-3-3τ is a novel therapeutic target to prevent breast cancer metastasis.


Assuntos
Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Neoplasias da Mama/patologia , Metástase Neoplásica/patologia , Proteínas rho de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Animais , Neoplasias da Mama/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica/genética , Fosforilação , Transdução de Sinais
9.
Mol Cell Biol ; 33(7): 1394-409, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23339869

RESUMO

TRIP6 is an adaptor protein that regulates cell motility and antiapoptotic signaling. Although it has been implicated in tumorigenesis, the underlying mechanism remains largely unknown. Here we provide evidence that TRIP6 promotes tumorigenesis by serving as a bridge to promote the recruitment of p27(KIP1) to AKT in the cytosol. TRIP6 regulates the membrane translocation and activation of AKT and facilitates AKT-mediated recognition and phosphorylation of p27(KIP1) specifically at T157, thereby promoting the cytosolic mislocalization of p27(KIP1). This is required for p27(KIP1) to enhance lysophosphatidic acid (LPA)-induced ovarian cancer cell migration. TRIP6 also promotes serum-induced reduction of nuclear p27(KIP1) expression levels through Skp2-dependent and -independent mechanisms. Consequently, knockdown of TRIP6 in glioblastoma or ovarian cancer xenografts restores nuclear p27(KIP1) expression and impairs tumor proliferation. As TRIP6 is upregulated in gliomas and its levels correlate with poor clinical outcomes in a dose-dependent manner, it may represent a novel prognostic marker and therapeutic target in gliomas.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Glioma/metabolismo , Células HEK293 , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transplante Heterólogo , Regulação para Cima , Zixina/genética , Zixina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA