RESUMO
BACKGROUND: Both sleep-related breathing disorders (SRBDs) and HIV infection can interfere with normal sleep architecture, and also cause physical and psychological distress. We aimed to understand the differences in the obstructive patterns, sleep architecture, physical and psychological distress when compared between people living with HIV (PLWH) and matched the severity of SRBDs controls. METHODS: A comparative study using matched case-control design was conducted. Men with HIV infection (case group) were enrolled from 2016 to 2019. A control group with HIV seronegative men were matched for SRBDs severity, and were selected from sleep medicine center database for comparison. RESULTS: The mean age of the 108 men (including 54 cases and 54 matched controls) was 33.75 years. Central-apnea index (CI) was higher in the case group rather than matched controls (mean CI, 0.34 vs. 0.17, p = 0.049). PLWH had a lower mean percentage of stage 3 sleep (10.26% vs. 13.94%, p = 0.034) and a higher percentage of rapid eye movement sleep (20.59% vs. 17.85%, p = 0.011) compared to matched controls. Nocturnal enuresis and sleepiness causing traffic accidents were more frequent complaint in PLWH compared to controls. CONCLUSIONS: Early detected SRBDs and subtypes in PLWH to begin treatment for the underlying cause could reduce the risk of sleepiness-related traffic accidents.
Assuntos
Infecções por HIV , Polissonografia , Síndromes da Apneia do Sono , Humanos , Masculino , Estudos de Casos e Controles , Adulto , Infecções por HIV/complicações , Infecções por HIV/fisiopatologia , Síndromes da Apneia do Sono/fisiopatologia , Síndromes da Apneia do Sono/diagnóstico , Pessoa de Meia-IdadeRESUMO
STUDY OBJECTIVES: To efficiently improve the scoring competency of scorers with varying levels of experience across regions in Taiwan, we developed a training program with a cloud-based polysomnography scoring platform to evaluate and improve interscorer agreement. METHODS: A total of 70 scorers from 34 sleep centers in Taiwan (job tenure: 0.5-39.0 years) completed a scoring test. All scorers scored a 742-epoch (30 s/epoch) overnight polysomnography recording of a patient with a moderate apnea-hypopnea index. Subsequently, 8 scoring experts delivered 8 interactive online lectures (each lasting 30 minutes). The training program included identifying scoring weaknesses, highlighting the latest scoring rules, and providing physicians' perspectives. Afterward, the scorers completed the second scoring test on the same participant. Changes in agreement from the first to second scoring test were identified. Sleep staging, sleep parameters, and respiratory events were considered for evaluating scoring agreement. RESULTS: The scorers' agreement in overall sleep stage scoring significantly increased from 74.6 to 82.3% (median score). The proportion of scorers with an agreement of ≥ 80% increased from 20.0% (14/70) to 58.6% (41/70) after the online training program. In addition, the scorers' agreement in overall respiratory-event scoring increased to 88.8% (median score) after training. The scorers with a job tenure of 2.0-4.9 years exhibited the highest level of improvement in overall sleep staging (their median agreement increased from 72.8 to 84.9%; P < .001). CONCLUSIONS: Our interactive online training program efficiently targeted the scorers' scoring weaknesses identified in the first scoring test, leading to substantial improvements in scoring proficiency. CITATION: Liao Y-S, Wu M-C, Li C-X, Lin W-K, Lin C-Y, Liang S-F. Polysomnography scoring-related training and quantitative assessment for improving interscorer agreement. J Clin Sleep Med. 2024;20(2):271-278.
Assuntos
Síndromes da Apneia do Sono , Sono , Humanos , Polissonografia , Reprodutibilidade dos Testes , Variações Dependentes do Observador , Fases do SonoRESUMO
STUDY OBJECTIVES: Decreased upper-airway muscle responsiveness is one of the major phenotypes of obstructive sleep apnea. Use of α1-adrenergic antagonists is correlated with decreased muscle responsiveness in animal studies, but this association has not yet been demonstrated in humans. This study examined whether use of α1-adrenergic antagonists is an independent risk factor for sleep apnea in humans. METHODS: Data for this retrospective cohort study were obtained from the National Health Insurance Research Database from Taiwan. Between 2000 and 2012, 25,466 patients with hypertension and 18,930 patients without hypertension were enrolled. These groups were divided into α1-adrenergic antagonist users and nonusers, matched by age, sex, and index year. Individuals were monitored for diagnosis of sleep apnea until 2013. RESULTS: After adjusting for propensity score and potential confounders, including age, geographic location, enrollee category, income, urbanization level, comorbidities, and medication, the adjusted hazard ratios (HRs) for development of sleep apnea with α1-adrenergic antagonist use were 2.38 (95% confidence interval [CI] 1.82-3.10) and 2.82 (95% CI 1.79-4.44) in the hypertension and nonhypertension groups, respectively. Similarly, the adjusted HRs for development of severe sleep apnea with α1-adrenergic antagonist use were 2.74 (95% CI 1.78-4.22) and 4.23 (95% CI 1.57-11.40) in hypertension and nonhypertension patient groups, respectively. The interaction between α1-adrenergic-antagonist user and patients with hypertension was tested using multivariable Cox regression. The results showed that there are positive additive interactions for developing sleep apnea and severe sleep apnea, respectively. CONCLUSIONS: Our study suggests that patients with hypertension using α1-adrenergic antagonists have a higher risk of sleep apnea. Routine sleep apnea screening would be beneficial for patients with hypertension who take α1-adrenergic antagonists.