Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686006

RESUMO

To elucidate the molecular mechanisms underlying the differential metabolism of albino (white), green, and purple pericarp coloration, biochemical profiling and transcriptome sequencing analyses were performed on three different tea pericarps, Zhongbaiyihao (Camellia sinensis L. var. Zhongbai), Jinxuan (Camellia sinensis L. var. Jinxuan), and Baitangziya (Camellia sinensis L. var. Baitang). Results of biochemical analysis revealed that low chlorophyll content and low chlorophyll/carotene ratio may be the biochemical basis for albino characteristics in the 'Zhongbaiyihao' pericarp. The differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, including DFR, F3'5'H, CCoAOMT, and 4-coumaroyl-CoA, were highly expressed in the purple 'Baitangziya' pericarp. In the chlorophyll synthesis of white pericarp, GUN5 (Genome Uncoupled 5) and 8-vinyl-reductase both showed high expression levels compared to the green one, which indicated that albino 'Zhongbaiyihao' pericarp had a higher chlorophyll synthesis capacity than 'Jinxuan'. Meanwhile, chlorophyllase (CLH, CSS0004684) was lower in 'Baitang' than in 'Jinxuan' and 'Zhongbaiyihao' pericarp. Among the differentially expressed transcription factors, MYB59, WRKY41-like2 (CS ng17509), bHLH62 like1 (CS ng6804), and bHLH62-like3 (CSS0039948) were downregulated in Jinxuan pericarp, suggesting that transcription factors played a role in regulating tea pericarp coloration. These findings provide a better understanding of the molecular mechanisms and theoretical basis for utilizing functional components of tea pericarp.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Clorofila , Perfilação da Expressão Gênica , Chá/genética , Fatores de Transcrição
2.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499369

RESUMO

Leaf color is one of the key factors involved in determining the processing suitability of tea. It relates to differential accumulation of flavor compounds due to the different metabolic mechanisms. In recent years, photosensitive etiolation or albefaction is an interesting direction in tea research field. However, the molecular mechanism of color formation remains unclear since albino or etiolated mutants have different genetic backgrounds. In this study, wide-target metabolomic and transcriptomic analyses were used to reveal the biological mechanism of leaf etiolation for 'Huangyu', a bud mutant of 'Yinghong 9'. The results indicated that the reduction in the content of chlorophyll and the ratio of chlorophyll to carotenoids might be the biochemical reasons for the etiolation of 'Huangyu' tea leaves, while the content of zeaxanthin was significantly higher. The differentially expressed genes (DEGs) involved in chlorophyll and chloroplast biogenesis were the biomolecular reasons for the formation of green or yellow color in tea leaves. In addition, our results also revealed that the changes of DEGs involved in light-induced proteins and circadian rhythm promoted the adaptation of etiolated tea leaves to light stress. Variant colors of tea leaves indicated different directions in metabolic flux and accumulation of flavor compounds.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Perfilação da Expressão Gênica , Clorofila/metabolismo , Chá/química , Transcriptoma , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA