Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(24): 31756-31767, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38837185

RESUMO

High-performance thin films combining large optical bandgap Al2O3 and high refractive index HfO2 are excellent components for constructing the next generation of laser systems with enhanced output power. However, the growth of low-defect plasma-enhanced-atomic-layer-deposited (PEALD) Al2O3 for high-power laser applications and its combination with HfO2 and SiO2 materials commonly used in high-power laser thin films still face challenges, such as how to minimize defects, especially interface defects. In this work, substrate-layer interface defects in Al2O3 single-layer thin films, layer-layer interface defects in Al2O3-based bilayer and trilayer thin films, and their effects on the laser-induced damage threshold (LIDT) were investigated via capacitance-voltage (C-V) measurements. The experimental results show that by optimizing the deposition parameters, specifically the deposition temperature, precursor exposure time, and plasma oxygen exposure time, Al2O3 thin films with low defect density and high LIDT can be obtained. Two trilayer anti-reflection (AR) thin film structures, Al2O3/HfO2/SiO2 and HfO2/Al2O3/SiO2, were then prepared and compared. The trilayer AR thin film with Al2O3/HfO2/SiO2 structure exhibits a lower interface defect density, better interface bonding performance, and an increase in LIDT by approximately 2.8 times. We believe these results provide guidance for the control of interface defects and the design of thin film structures and will benefit many thin film optics for laser applications.

2.
Gut Liver ; 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814898

RESUMO

Inflammatory bowel disease (IBD) is a complex condition resulting from environmental, microbial, immunologic, and genetic factors. With the advancement of Mendelian randomization research in IBD, we have gained new insights into the relationship between these factors and IBD. Many animal models of IBD have been developed using different methods, but few studies have attempted to model IBD by combining environmental factors and microbial factors. In this review, we examine how environmental factors and microbial factors affect the development and progression of IBD, and how they interact with each other and with the intestinal microbiota. We also summarize the current methods for creating animal models of IBD and compare their advantages and disadvantages. Based on the latest findings from Mendelian randomization studies on the role of environmental factors in IBD, we discuss which environmental and microbial factors could be used to construct a more realistic and reliable IBD experimental model. We propose that animal models of IBD should consider both environmental and microbial factors to better mimic human IBD pathogenesis and to reveal the underlying mechanisms of IBD at the immune and genetic levels. We highlight the importance of environmental and microbial factors in IBD pathogenesis and offer new perspectives and suggestions for improving experimental animal modeling. Our goal is to create a model that closely resembles the clinical picture of IBD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA