Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Virol J ; 21(1): 152, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970084

RESUMO

BACKGROUND: High-risk human papillomavirus (HR-HPV) infection is an important factor for the development of cervical cancer. HPV18 is the second most common HR-HPV after HPV16. METHODS: In this study, MEGA11 software was used to analyze the variation and phylogenetic tree of HPV18 E6-E7 and L1 genes. The selective pressure to E6, E7 and L1 genes was estimated using pamlX. In addition, the B cell epitopes of L1 amino acid sequences and T cell epitopes of E6-E7 amino acid sequences in HPV18 were predicted by ABCpred server and IEDB website, respectively. RESULTS: A total of 9 single nucleotide variants were found in E6-E7 sequences, of which 2 were nonsynonymous variants and 7 were synonymous variants. Twenty single nucleotide variants were identified in L1 sequence, including 11 nonsynonymous variants and 9 synonymous variants. Phylogenetic analysis showed that E6-E7 and L1 sequences were all distributed in A lineage. In HPV18 E6, E7 and L1 sequences, no positively selected site was found. The nonconservative substitution R545C in L1 affected hypothetical B cell epitope. Two nonconservative substitutions, S82A in E6, and R53Q in E7, impacted multiple hypothetical T cell epitopes. CONCLUSION: The sequence variation data of HPV18 may lay a foundation for the virus diagnosis, further study of cervical cancer and vaccine design in central China.


Assuntos
Variação Genética , Papillomavirus Humano 18 , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Filogenia , Proteínas Oncogênicas Virais/genética , China , Humanos , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/classificação , Proteínas E7 de Papillomavirus/genética , Proteínas do Capsídeo/genética , Feminino , Epitopos de Linfócito T/genética , Infecções por Papillomavirus/virologia , Proteínas Repressoras/genética , Epitopos de Linfócito B/genética , Proteínas de Ligação a DNA
2.
Acta Biochim Biophys Sin (Shanghai) ; 53(4): 400-409, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33677475

RESUMO

Persistent hypotonic and inflammatory conditions in the joint cavity can lead to the loss of cartilage matrix and cell death, which are the important mechanisms of osteoarthritis (OA) onset. Previous studies have confirmed that the existence of a hypotonic environment is a red flag for inflammation, as hypotonic environment induces the opening of the chloride channel of the cell and promotes chloride ion efflux, which prompts the cell volume to increase. Chloride channels play an important role in the regulation of mineralization and chondrocyte death. Here, we reported that OA chondrocytes showed a significant increase of cell death rate and the imbalance of cartilage matrix catabolism. We found that the distribution of skeleton protein F-actin was disordered. In addition, the volume-sensitive chloride current of OA chondrocytes decreased significantly with the increase of the expression levels of inflammation-related proteins caspase-1, caspase-3, and NLRP3. Moreover, interleukin-1ß (IL-1ß) showed a potential to activate the chloride current of normal chondrocytes. These results indicate that IL-1ß-induced chloride channel opening in chondrocytes may be closely related to the occurrence of OA. This chloride channel opening process may therefore be a potential target for the treatment of OA.


Assuntos
Cloretos/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/metabolismo , Idoso , Idoso de 80 Anos ou mais , Condrócitos/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Transporte de Íons , Masculino , Osteoartrite/patologia
3.
Biomed Pharmacother ; 176: 116832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850659

RESUMO

Berberine (BBR) is a compound derived from Chinese herbal medicine, known for its anticancer properties through multiple signaling pathways. However, whether BBR can inhibit tumor growth by participating in ferroptosis remains unconfirmed. In this study, we demonstrated that berberine synergistically inhibited NSCLC in combination with multiple ferroptosis inducers, and this combination synergistically down-regulated the mRNA and protein expression of SLC7A11, GPX4, and NRF2, resulting in ferroptosis accompanied by significant depletion of GSH, and aberrant accumulation of reactive oxygen species and malondialdehyde. In a lung cancer allograft model, the combination treatment exhibited enhanced anticancer effects compared to using either drug alone. Notably, p53 is critical in determining the ferroptosis sensitivity. We found that the combination treatment did not elicit a synergistic anticancer effect in cells with a p53 mutation or with exogenous expression of mutant p53. These findings provide insight into the mechanism by which combination induces ferroptosis and the regulatory role of p53 in this process. It may guide the development of new strategies for treating NSCLC, offering great medical potential for personal diagnosis and treatment.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Berberina , Carcinoma Pulmonar de Células não Pequenas , Sinergismo Farmacológico , Ferroptose , Neoplasias Pulmonares , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Proteína Supressora de Tumor p53 , Ferroptose/efeitos dos fármacos , Berberina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Células A549
4.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985868

RESUMO

Delicate design and precise manipulation of electrode morphology has always been crucial in electrochemistry. Generally, porous morphology has been preferred due to the fast kinetic transport characteristics of cations. Nevertheless, more refined design details such as the granularity uniformity that usually goes along with the porosity regulation of film electrodes should be taken into consideration, especially in long-term cation insertion and extraction. Here, inorganic electrochromism as a special member of the electrochemical family and WO3 films as the most mature electrochromic electrode material were chosen as the research background. Two kinds of WO3 films were prepared by magnetron sputtering, one with a relatively loose morphology accompanied by nonuniform granularity and one with a compact morphology along with uniform particle size distribution, respectively. Electrochemical performances and cyclic stability of the two film electrodes were then traced and systematically compared. In the beginning, except for faster kinetic transport characters of the 50 W-deposited WO3 film, the two electrodes showed equivalent optical and electrochemical performances. However, after 5000 CV cycles, the 50 W-deposited WO3 film electrode cracked seriously. Strong stress distribution centered among boundaries of the nonuniform particle clusters together with the weak bonding among particles induced the mechanical damage. This discovery provides a more solid background for further delicate film electrode design.

5.
Nat Commun ; 14(1): 4394, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474626

RESUMO

The incidence of rheumatoid arthritis (RA) is increasing with age. DNA fragments is known to accumulate in certain autoimmune diseases, but the mechanistic relationship among ageing, DNA fragments and RA pathogenesis remain unexplored. Here we show that the accumulation of DNA fragments, increasing with age and regulated by the exonuclease TREX1, promotes abnormal activation of the immune system in an adjuvant-induced arthritis (AIA) rat model. Local overexpression of TREX1 suppresses synovial inflammation in rats, while conditional genomic deletion of TREX1 in AIA rats result in higher levels of circulating free (cf) DNA and hence abnormal immune activation, leading to more severe symptoms. The dysregulation of the heterodimeric transcription factor AP-1, formed by c-Jun and c-Fos, appear to regulate both TREX1 expression and SASP induction. Thus, our results confirm that DNA fragments are inflammatory mediators, and TREX1, downstream of AP-1, may serve as regulator of cellular immunity in health and in RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-fos/genética , Inflamação , Fator de Transcrição AP-1/metabolismo
6.
Aging Dis ; 13(3): 787-800, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35656105

RESUMO

Degenerative joint diseases of the hips and knees are common and are accompanied by severe pain and movement disorders. At the microscopic level, the main characteristics of osteoarthritis are the continuous destruction and degeneration of cartilage, increased cartilage extracellular matrix catabolism, decreased anabolism, increased synovial fluid, and decreased osmotic pressure. Cell volume stability is mainly regulated by ion channels, many of which are expressed in chondrocytes. These ion channels are closely related to pain regulation, volume regulation, the inflammatory response, cell proliferation, apoptosis, and cell differentiation. In this review, we focus on the important role of volume control-related ion channels in cartilage matrix remodeling and summarize current views. In addition, the potential mechanism of the volume-sensitive anion channel LRRC8A in the early occurrence of osteoarthritis is discussed.

7.
J Inflamm Res ; 15: 953-964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35177922

RESUMO

Articular cartilage allows the human body to buffer and absorb stress during normal exercise. It is mainly composed of cartilage cells and the extracellular matrix and is surrounded by the extracellular microenvironment formed by synovial fluid and various factors in it. Studies have shown that chondrocytes are the metabolic center of articular cartilage. Under physiological conditions, the extracellular matrix is in a dynamic balance of anabolism and catabolism, and various factors and physical and chemical conditions in the extracellular microenvironment are also in a steady state. This homeostasis depends on the normal function of proteins represented by various ion channels on chondrocytes. In mammalian chondrocyte species, ion channels are mainly divided into two categories: cation channels and anion channels. Anion channels such as chloride channels have become hot research topics in recent years. These channels play an extremely important role in various physiological processes. Recently, a growing body of evidence has shown that many pathological processes, abnormal concentration of mechanical stress and chloride channel dysfunction in articular cartilage lead to microenvironment disorders, matrix and bone metabolism imbalances, which cause partial aseptic inflammation. These pathological processes initiate extracellular matrix degradation, abnormal chondrocyte death, hyperplasia of inflammatory synovium and bony. Osteoarthritis (OA) is a common clinical disease in orthopedics. Its typical manifestations are joint inflammation and pain caused by articular cartilage degeneration, but its pathogenesis has not been fully elucidated. Focusing on the physiological functions and pathological changes of chloride channels and pathophysiology of aseptic inflammation furthers the understanding of OA pathogenesis and provides possible targets for subsequent medication development.

8.
Int Immunopharmacol ; 101(Pt A): 108179, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601329

RESUMO

The term "osteoimmunology" was coined to denote the bridge between the immune system and the skeletal system. Osteoimmunology is interdisciplinary, and a full understanding and development of this "bridge" will provide an in-depth understanding of the switch between body health and disease development. B lymphocytes can promote the maturation and differentiation of osteoclasts, and osteoclasts have a negative feedback effect on B lymphocytes. Different subtypes of T lymphocytes regulate osteoclasts in different directions. T lymphocytes have a two-way regulatory effect on osteoblasts, while B lymphocytes have minimal regulatory effects on osteoblasts. In contrast, osteoblasts can promote the differentiation and maturation of T lymphocytes and B lymphocytes. Different immune cells have different effects on chondrocytes; some cooperate with each other, while some antagonize each other. In a healthy adult body, bone resorption and bone formation are in a dynamic balance under the action of multiple mechanisms. In this review, we summarize the interactions and key signaling molecular mechanisms between each type of cell in the immune system and the skeletal system.


Assuntos
Comunicação Celular/imunologia , Osteoartrite/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Condrócitos/imunologia , Condrócitos/patologia , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/patologia , Osteoblastos/imunologia , Osteoblastos/metabolismo , Osteoclastos/imunologia , Osteoclastos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
Nanoscale Res Lett ; 14(1): 56, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30767099

RESUMO

This paper presents a biodegradation study conducted for 90 days under standardized controlled composting conditions of poly (lactic acid) (PLA) filled with functionalized anatase-titania nanofiller (PLA/TiO2 nanocomposites). The surface morphology, thermal properties, percentage of biodegradation, and molecular weight changes at different incubation times were evaluated via visual inspection, scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) by taking degraded samples from compost at the end of target biodegradation time interval. The rapid increase of crystallinity indicated that the PLA and PLA/TiO2 nanocomposites had heterogeneous degradation mechanisms under controlled composting conditions. The biodegradation rate of PLA/TiO2 nanocomposites was higher than that of pure PLA because water molecules easily penetrated the nanocomposites. The dispersion of the nanoparticles in the PLA/TiO2 nanocomposites affected the biodegradation rate of PLA. Moreover, the biodegradation of PLA could be controlled by adding an amount of dispersed TiO2 nanofillers under controlled composting conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA