Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Cell ; 69(4): 594-609.e8, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452639

RESUMO

Accumulating evidence indicates that the MDM2 oncoprotein promotes tumorigenesis beyond its canonical negative effects on the p53 tumor suppressor, but these p53-independent functions remain poorly understood. Here, we show that a fraction of endogenous MDM2 is actively imported in mitochondria to control respiration and mitochondrial dynamics independently of p53. Mitochondrial MDM2 represses the transcription of NADH-dehydrogenase 6 (MT-ND6) in vitro and in vivo, impinging on respiratory complex I activity and enhancing mitochondrial ROS production. Recruitment of MDM2 to mitochondria increases during oxidative stress and hypoxia. Accordingly, mice lacking MDM2 in skeletal muscles exhibit higher MT-ND6 levels, enhanced complex I activity, and increased muscular endurance in mild hypoxic conditions. Furthermore, increased mitochondrial MDM2 levels enhance the migratory and invasive properties of cancer cells. Collectively, these data uncover a previously unsuspected function of the MDM2 oncoprotein in mitochondria that play critical roles in skeletal muscle physiology and may contribute to tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/patologia , Complexo I de Transporte de Elétrons/metabolismo , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Complexo I de Transporte de Elétrons/genética , Genoma Mitocondrial , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Invasividade Neoplásica , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais , Transcrição Gênica , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cell ; 62(6): 890-902, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27264869

RESUMO

The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proliferação de Células , Cromatina/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Glicina/metabolismo , Células HCT116 , Homeostase , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Nus , Mutação , Oxirredução , Estresse Oxidativo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteínas de Ligação a Hormônio da Tireoide
3.
Cell Mol Life Sci ; 79(5): 270, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35501580

RESUMO

Glycolysis is essential to support cancer cell proliferation, even in the presence of oxygen. The transcriptional co-regulator RIP140 represses the activity of transcription factors that drive cell proliferation and metabolism and plays a role in mammary tumorigenesis. Here we use cell proliferation and metabolic assays to demonstrate that RIP140-deficiency causes a glycolysis-dependent increase in breast tumor growth. We further demonstrate that RIP140 reduces the transcription of the glucose transporter GLUT3 gene, by inhibiting the transcriptional activity of hypoxia inducible factor HIF-2α in cooperation with p53. Interestingly, RIP140 expression was significantly associated with good prognosis only for breast cancer patients with tumors expressing low GLUT3, low HIF-2α and high p53, thus confirming the mechanism of RIP140 anti-tumor activity provided by our experimental data. Overall, our work establishes RIP140 as a critical modulator of the p53/HIF cross-talk to inhibit breast cancer cell glycolysis and proliferation.


Assuntos
Neoplasias da Mama , Proteína Supressora de Tumor p53 , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Feminino , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Glicólise/genética , Humanos , Hipóxia , Proteína 1 de Interação com Receptor Nuclear , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Anal Chem ; 92(8): 5890-5896, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32212637

RESUMO

Studies of the topology, functioning, and regulation of metabolic systems are based on two main types of information that can be measured by mass spectrometry: the (absolute or relative) concentration of metabolites and their isotope incorporation in 13C-labeling experiments. These data are currently obtained from two independent experiments because the 13C-labeled internal standard (IS) used to determine the concentration of a given metabolite overlaps the 13C-mass fractions from which its 13C-isotopologue distribution (CID) is quantified. Here, we developed a generic method with a dedicated processing workflow to obtain these two sets of information simultaneously in a unique sample collected from a single cultivation, thereby reducing by a factor of 2 both the number of cultivations to perform and the number of samples to collect, prepare, and analyze. The proposed approach is based on an IS labeled with other isotope(s) that can be resolved from the 13C-mass fractions of interest. As proof-of-principle, we analyzed amino acids using a doubly labeled 15N13C-cell extract as IS. Extensive evaluation of the proposed approach shows a similar accuracy and precision compared to state-of-the-art approaches. We demonstrate the value of this approach by investigating the dynamic response of amino acids metabolism in mammalian cells upon activation of the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a key component of the unfolded protein response. Integration of metabolite concentrations and isotopic profiles reveals a reduced de novo biosynthesis of amino acids upon PERK activation. The proposed approach is generic and can be applied to other (micro)organisms, analytical platforms, isotopic tracers, or classes of metabolites.


Assuntos
Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Isótopos de Carbono , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Marcação por Isótopo , Espectrometria de Massas , Isótopos de Nitrogênio , Ratos
5.
Proc Natl Acad Sci U S A ; 113(39): 11004-9, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621431

RESUMO

The multifunctional protein E4 transcription factor 1 (E4F1) is an essential regulator of epidermal stem cell (ESC) maintenance. Here, we found that E4F1 transcriptionally regulates a metabolic program involved in pyruvate metabolism that is required to maintain skin homeostasis. E4F1 deficiency in basal keratinocytes resulted in deregulated expression of dihydrolipoamide acetyltransferase (Dlat), a gene encoding the E2 subunit of the mitochondrial pyruvate dehydrogenase (PDH) complex. Accordingly, E4f1 knock-out (KO) keratinocytes exhibited impaired PDH activity and a redirection of the glycolytic flux toward lactate production. The metabolic reprogramming of E4f1 KO keratinocytes associated with remodeling of their microenvironment and alterations of the basement membrane, led to ESC mislocalization and exhaustion of the ESC pool. ShRNA-mediated depletion of Dlat in primary keratinocytes recapitulated defects observed upon E4f1 inactivation, including increased lactate secretion, enhanced activity of extracellular matrix remodeling enzymes, and impaired clonogenic potential. Altogether, our data reveal a central role for Dlat in the metabolic program regulated by E4F1 in basal keratinocytes and illustrate the importance of PDH activity in skin homeostasis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Homeostase , Proteínas Mitocondriais/metabolismo , Pele/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Membrana Basal/metabolismo , Adesão Celular , Células Cultivadas , Microambiente Celular , Proteínas de Ligação a DNA/deficiência , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Células Epidérmicas , Epiderme/metabolismo , Regulação da Expressão Gênica , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos Knockout , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Piruvatos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras , Células-Tronco/metabolismo , Fatores de Transcrição/deficiência , Ubiquitina-Proteína Ligases
6.
Haematologica ; 103(6): 988-998, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519869

RESUMO

Patients with acute myeloid leukemia and a high white blood cell count are at increased risk of early death and relapse. Because mediators of inflammation contribute to leukostasis and chemoresistance, dexamethasone added to chemotherapy could improve outcomes. This retrospective study evaluated the impact of adding or not adding dexamethasone to chemotherapy in a cohort of 160 patients with at least 50×109 white blood cells. In silico studies, primary samples, leukemic cell lines, and xenograft mouse models were used to explore the antileukemic activity of dexamethasone. There was no difference with respect to induction death rate, response, and infections between the 60 patients in the dexamethasone group and the 100 patients in the no dexamethasone group. Multivariate analysis showed that dexamethasone was significantly associated with improved relapse incidence (adjusted sub-HR: 0.30; 95% CI: 0.14-0.62; P=0.001), disease-free survival (adjusted HR: 0.50; 95% CI: 0.29-0.84; P=0.010), event-free survival (adjusted HR: 0.35; 95% CI: 0.21-0.58; P<0.001), and overall survival (adjusted HR: 0.41; 95% CI: 0.22-0.79; P=0.007). In a co-culture system, dexamethasone reduced the frequency of leukemic long-term culture initiating cells by 38% and enhanced the cytotoxicity of doxorubicin and cytarabine. In a patient-derived xenograft model treated with cytarabine, chemoresistant cells were enriched in genes of the inflammatory response modulated by dexamethasone. Dexamethasone also demonstrated antileukemic activity in NPM1-mutated samples. Dexamethasone may improve the outcome of acute myeloid leukemia patients receiving intensive chemotherapy. This effect could be due to the modulation of inflammatory chemoresistance pathways and to a specific activity in acute myeloid leukemia with NPM1 mutation.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Dexametasona/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucocitose/tratamento farmacológico , Leucocitose/patologia , Adolescente , Adulto , Idoso , Antineoplásicos Hormonais/administração & dosagem , Antineoplásicos Hormonais/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucocitose/genética , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Recidiva , Indução de Remissão , Resultado do Tratamento , Adulto Jovem
7.
Int J Mol Sci ; 19(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366412

RESUMO

Background: In Acute Myeloid Leukemia (AML), a complete response to chemotherapy is usually obtained after conventional chemotherapy but overall patient survival is poor due to highly frequent relapses. As opposed to chronic myeloid leukemia, B lymphoma or multiple myeloma, AML is one of the rare malignant hemopathies the therapy of which has not significantly improved during the past 30 years despite intense research efforts. One promising approach is to determine metabolic dependencies in AML cells. Moreover, two key metabolic enzymes, isocitrate dehydrogenases (IDH1/2), are mutated in more than 15% of AML patient, reinforcing the interest in studying metabolic reprogramming, in particular in this subgroup of patients. Methods: Using a multi-omics approach combining proteomics, lipidomics, and isotopic profiling of [U-13C] glucose and [U-13C] glutamine cultures with more classical biochemical analyses, we studied the impact of the IDH1 R132H mutation in AML cells on lipid biosynthesis. Results: Global proteomic and lipidomic approaches showed a dysregulation of lipid metabolism, especially an increase of phosphatidylinositol, sphingolipids (especially few species of ceramide, sphingosine, and sphinganine), free cholesterol and monounsaturated fatty acids in IDH1 mutant cells. Isotopic profiling of fatty acids revealed that higher lipid anabolism in IDH1 mutant cells corroborated with an increase in lipogenesis fluxes. Conclusions: This integrative approach was efficient to gain insight into metabolism and dynamics of lipid species in leukemic cells. Therefore, we have determined that lipid anabolism is strongly reprogrammed in IDH1 mutant AML cells with a crucial dysregulation of fatty acid metabolism and fluxes, both being mediated by 2-HG (2-Hydroxyglutarate) production.


Assuntos
Ácidos Graxos/metabolismo , Marcação por Isótopo/métodos , Leucemia Mieloide Aguda/metabolismo , Metabolismo dos Lipídeos/fisiologia , Glutaratos/metabolismo , Células HL-60 , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/genética , Mutação/genética
8.
Proc Natl Acad Sci U S A ; 111(11): 4115-20, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591579

RESUMO

Autophagy is regulated by posttranslational modifications, including acetylation. Here we show that HLA-B-associated transcript 3 (BAT3) is essential for basal and starvation-induced autophagy in embryonic day 18.5 BAT3(-/-) mouse embryos and in mouse embryonic fibroblasts (MEFs) through the modulation of p300-dependent acetylation of p53 and ATG7. Specifically, BAT3 increases p53 acetylation and proautophagic p53 target gene expression, while limiting p300-dependent acetylation of ATG7, a mechanism known to inhibit autophagy. In the absence of BAT3 or when BAT3 is located exclusively in the cytosol, autophagy is abrogated, ATG7 is hyperacetylated, p53 acetylation is abolished, and p300 accumulates in the cytosol, indicating that BAT3 regulates the nuclear localization of p300. In addition, the interaction between BAT3 and p300 is stronger in the cytosol than in the nucleus and, during starvation, the level of p300 decreases in the cytosol but increases in the nucleus only in the presence of BAT3. We conclude that BAT3 tightly controls autophagy by modulating p300 intracellular localization, affecting the accessibility of p300 to its substrates, p53 and ATG7.


Assuntos
Autofagia/fisiologia , Proteína p300 Associada a E1A/metabolismo , Embrião de Mamíferos/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Fracionamento Celular , Núcleo Celular/metabolismo , Citosol/metabolismo , Primers do DNA/genética , Embrião de Mamíferos/metabolismo , Imunoprecipitação , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase em Tempo Real
9.
Nat Cell Biol ; 9(3): 331-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17293853

RESUMO

The p300-CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) involved in the reversible acetylation of various transcriptional regulators, including the tumour suppressor p53. It is implicated in many cellular processes, such as transcription, differentiation, proliferation and apoptosis. We observed that knockdown of PCAF expression in HeLa or U2OS cell lines induces stabilization of the oncoprotein Hdm2, a RING finger E3 ligase primarily known for its role in controlling p53 stability. To investigate the molecular basis of this effect, we examined whether PCAF is involved in Hdm2 ubiquitination. Here, we show that PCAF, in addition to its acetyltransferase activity, possesses an intrinsic ubiquitination activity that is critical for controlling Hdm2 expression levels, and thus p53 functions. Our data highlight a regulatory crosstalk between PCAF and Hdm2 activities, which is likely to have a central role in the subtle control of p53 activity after DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Sítios de Ligação/genética , Domínio Catalítico/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Células HeLa , Histona Acetiltransferases/genética , Humanos , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Antissenso/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Raios Ultravioleta , Zinostatina/farmacologia , Fatores de Transcrição de p300-CBP
10.
Methods Mol Biol ; 2740: 155-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393475

RESUMO

Cell cycle is an ordered sequence of events that occur in a cell preparing for cell division . The cell cycle is a four-stage process in which the cell increases in size, copies its DNA , prepares to divide, and divides. All these stages require a coordination of signaling pathways as well as adequate levels of energy and building blocks. These specific signaling and metabolic switches are tightly orchestrated in order for the cell cycle to occur properly. In this book chapter, we will provide information on the basis of metabolism and cell cycle interplay, and we will finish by an unexhaustive list of metabolomics approaches available to study the reciprocal control of metabolism and cell cycle.


Assuntos
Metabolômica , Transdução de Sinais , Ciclo Celular , Divisão Celular , DNA
11.
Proc Natl Acad Sci U S A ; 107(49): 21076-81, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21088222

RESUMO

A growing body of evidence suggests that the multifunctional protein E4F1 is involved in signaling pathways that play essential roles during normal development and tumorigenesis. We generated E4F1 conditional knockout mice to address E4F1 functions in vivo in newborn and adult skin. E4F1 inactivation in the entire skin or in the basal compartment of the epidermis induces skin homeostasis defects, as evidenced by transient hyperplasia in the interfollicular epithelium and alteration of keratinocyte differentiation, followed by loss of cellularity in the epidermis and severe skin ulcerations. E4F1 depletion alters clonogenic activity of epidermal stem cells (ESCs) ex vivo and ends in exhaustion of the ESC pool in vivo, indicating that the lesions observed in the E4F1 mutant skin result, at least in part, from cell-autonomous alterations in ESC maintenance. The clonogenic potential of E4F1 KO ESCs is rescued by Bmi1 overexpression or by Ink4a/Arf or p53 depletion. Skin phenotype of E4F1 KO mice is also delayed in animals with Ink4a/Arf and E4F1 compound gene deficiencies. Our data identify a regulatory axis essential for ESC-dependent skin homeostasis implicating E4F1 and the Bmi1-Arf-p53 pathway.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Células Epidérmicas , Homeostase , Células-Tronco/fisiologia , Fatores de Transcrição/fisiologia , Fatores Etários , Animais , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Fenótipo , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases
12.
Med Sci (Paris) ; 29(12): 1125-30, 2013 Dec.
Artigo em Francês | MEDLINE | ID: mdl-24356143

RESUMO

The p53 tumor suppressor is an essential downstream effector of various cellular stress response pathways that is functionally inactivated in most, if not all, tumors. Since its discovery more than 30 years ago, its role in the control of cell proliferation, senescence and cell survival has been widely described. However, growing evidences from several laboratories indicate that p53 has important transcriptional and non-transcriptional functions in the control of metabolism, including the regulation of glycolysis, glutaminolysis or mitochondrial respiration. Originally identified using in vitro cellular models, this previously underestimated role of p53 has been confirmed in vivo in various genetically engineered mouse models. These recent data suggest that p53 functions in various metabolic pathways significantly contribute to its role in adult tissue homeostasis, aging as well as tumor suppression.


Assuntos
Metabolismo/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Glicólise/genética , Glicólise/fisiologia , Homeostase , Humanos , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Metabolismo/genética , Mitocôndrias/metabolismo
13.
iScience ; 26(6): 106899, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37305702

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains one of the human cancers with the poorest prognosis. Interestingly, we found that mitochondrial respiration in primary human PDAC cells depends mainly on the fatty acid oxidation (FAO) to meet basic energy requirements. Therefore, we treated PDAC cells with perhexiline, a well-recognized FAO inhibitor used in cardiac diseases. Some PDAC cells respond efficiently to perhexiline, which acts synergistically with chemotherapy (gemcitabine) in vitro and in two xenografts in vivo. Importantly, perhexiline in combination with gemcitabine induces complete tumor regression in one PDAC xenograft. Mechanistically, this co-treatment causes energy and oxidative stress promoting apoptosis but does not exert inhibition of FAO. Yet, our molecular analysis indicates that the carnitine palmitoyltransferase 1C (CPT1C) isoform is a key player in the response to perhexiline and that patients with high CPT1C expression have better prognosis. Our study reveals that repurposing perhexiline in combination with chemotherapy is a promising approach to treat PDAC.

14.
Nat Cell Biol ; 5(8): 754-61, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12883554

RESUMO

The human immunodeficiency virus type 1 (HIV-1) encodes a potent transactivator, Tat, which functions through binding to a short leader RNA, called transactivation responsive element (TAR). Recent studies suggest that Tat activates the HIV-1 long terminal repeat (LTR), mainly by adapting co-activator complexes, such as p300, PCAF and the positive transcription elongation factor P-TEFb, to the promoter. Here, we show that the proto-oncoprotein Hdm2 interacts with Tat and mediates its ubiquitination in vitro and in vivo. In addition, Hdm2 is a positive regulator of Tat-mediated transactivation, indicating that the transcriptional properties of Tat are stimulated by ubiquitination. Fusion of ubiquitin to Tat bypasses the requirement of Hdm2 for efficient transactivation, supporting the notion that ubiquitin has a non-proteolytic function in Tat-mediated transactivation.


Assuntos
Produtos do Gene tat/metabolismo , HIV-1/genética , Proteínas Nucleares , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Ativação Transcricional , Ubiquitina/metabolismo , Linhagem Celular , Produtos do Gene tat/genética , Repetição Terminal Longa de HIV , HIV-1/metabolismo , Humanos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2 , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana
15.
Cancers (Basel) ; 13(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406607

RESUMO

The p53 pathway is functionally inactivated in most, if not all, human cancers. The p53 protein is a central effector of numerous stress-related molecular cascades. p53 controls a safeguard mechanism that prevents accumulation of abnormal cells and their transformation by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development, as well as to other pathophysiological conditions including aging, type II diabetes, and liver disease. Although much less documented than p53 metabolic activities, converging lines of evidence indicate that other key components of this tumor suppressor pathway are also involved in cellular metabolism through p53-dependent as well as p53-independent mechanisms. Thus, at least from a metabolic standpoint, the p53 pathway must be considered as a non-linear pathway, but the complex metabolic network controlled by these p53 regulators and the mechanisms by which their activities are coordinated with p53 metabolic functions remain poorly understood. In this review, we highlight some of the metabolic pathways controlled by several central components of the p53 pathway and their role in tissue homeostasis, metabolic diseases, and cancer.

16.
Nat Commun ; 12(1): 7037, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857760

RESUMO

Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking E4F1 activate a p53-dependent transcriptional program involved in lipid metabolism. The direct interaction between E4F1 and p53 and their co-recruitment to the Steaoryl-CoA Desaturase-1 locus play an important role to regulate monounsaturated fatty acids synthesis in adipocytes. Consistent with the role of this E4F1-p53-Steaoryl-CoA Desaturase-1 axis in adipocytes, p53 inactivation or diet complementation with oleate partly restore adiposity and improve insulin sensitivity in E4F1-deficient mice. Altogether, our findings identify a crosstalk between E4F1 and p53 in the control of lipid metabolism in adipocytes that is relevant to obesity and insulin resistance.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Obesidade/genética , Proteínas Repressoras/genética , Estearoil-CoA Dessaturase/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Adipócitos/patologia , Tecido Adiposo/patologia , Adulto , Idoso , Animais , Índice de Massa Corporal , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Transdução de Sinais , Estearoil-CoA Dessaturase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo
17.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760042

RESUMO

Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid ß-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide/genética , Mitocôndrias/genética , Mutação , Doença Aguda , Aminopiridinas/farmacologia , Animais , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Células HL-60 , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Triazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Mol Metab ; 33: 2-22, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31685430

RESUMO

BACKGROUND: The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW: We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS: p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.


Assuntos
Metabolismo Energético/genética , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Homeostase/genética , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
19.
Oncogene ; 39(4): 935-945, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558799

RESUMO

RNA interference offers therapeutic opportunities for the clinical targeting of otherwise undruggable oncogenes. However RNAi can have off-target effects that considerably increase treatment risks. To manage these side effects and allow an easy subtraction of their activity in healthy tissues, we present here the TAG-RNAi approach where cells that are not designated targets do not have the mRNA tag. Using TAG-RNAi we first established the off-target signatures of three different siRNAs specific to the Cyclin D1 oncogene by RNA-sequencing of cultured cancer cells expressing a FLAG-HA-tagged-Cyclin D1. Then, by symmetrical allografts of tagged-cancer cells and untagged controls on the left and right flanks of model mice, we demonstrate that TAG-RNAi is a reliable approach to study the functional impact of any oncogene without off-target bias. Finally we show, as examples, that mutation-specific TAG-RNAi can be applied to downregulate two oncogenic mutants, KRAS-G12V or BRAF-V600E, while sparing the expression of the wild-type proteins. TAG-RNAi will thus avoid the traditional off-target limitations of RNAi in future experimental approaches.


Assuntos
Ciclina D1/antagonistas & inibidores , Mutação , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
20.
Sci Transl Med ; 12(547)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522803

RESUMO

Well-differentiated and dedifferentiated liposarcomas (LPSs) are characterized by a systematic amplification of the MDM2 oncogene, which encodes a key negative regulator of the p53 pathway. The molecular mechanisms underlying MDM2 overexpression while sparing wild-type p53 in LPS remain poorly understood. Here, we show that the p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in LPS and mediate an addiction to serine metabolism that sustains nucleotide synthesis and tumor growth. Treatment of LPS cells with Nutlin-3A, a pharmacological inhibitor of the MDM2-p53 interaction, stabilized p53 but unexpectedly enhanced MDM2-mediated control of serine metabolism by increasing its recruitment to chromatin, likely explaining the poor clinical efficacy of this class of MDM2 inhibitors. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2 by SP141, a distinct MDM2 inhibitor triggering its degradation, or interfering with de novo serine synthesis, impaired LPS growth both in vitro and in clinically relevant patient-derived xenograft models. Our data indicate that targeting MDM2 functions in serine metabolism represents a potential therapeutic strategy for LPS.


Assuntos
Antineoplásicos , Lipossarcoma , Antineoplásicos/uso terapêutico , Humanos , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina/uso terapêutico , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA