Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Euro Surveill ; 29(25)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38904109

RESUMO

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.


Assuntos
Animais Selvagens , Charadriiformes , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Finlândia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Animais Selvagens/virologia , Charadriiformes/virologia , Surtos de Doenças/veterinária , Fazendas , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/epidemiologia , Raposas/virologia , Aves/virologia , Vison/virologia
2.
Euro Surveill ; 28(42)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855904

RESUMO

We report cases of mammalian infection with highly pathogenic avian influenza (HPAI) virus A(H5N1) clade 2.3.4.4b in Northern Ireland. Two common gulls (Larus canus) and two red fox kits (Vulpes vulpes), were found dead in close vicinity. Comparison of viral whole genome sequences obtained from the animals identified a novel mammalian adaptation, PB2-M535I. Analysis of genetic sequences from other recent mammalian infections shows that this mutation has arisen on at least five occasions in three European countries since April 2023.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Raposas , Virus da Influenza A Subtipo H5N1/genética , Irlanda do Norte/epidemiologia , Vírus da Influenza A/genética , Filogenia
3.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535475

RESUMO

Since mid-July 2023, an outbreak caused by highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b genotype BB is ongoing among farmed animals in South and Central Ostrobothnia, Finland. Infections in foxes, American minks and raccoon dogs have been confirmed on 20 farms. Genetic analysis suggests introductions from wild birds scavenging for food in farm areas. Investigations point to direct transmission between animals. While no human infections have been detected, control measures are being implemented to limit spread and human exposure.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Fazendas , Finlândia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Vison , Filogenia
4.
Emerg Infect Dis ; 28(6): 1229-1232, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378057

RESUMO

Multiple introductions of SARS-COV-2 Omicron variant BA.1 and BA.1.1. lineages to Finland were detected in early December 2021. Within 3 weeks, Omicron overtook Delta as the most common variant in the capital region. Sequence analysis demonstrated the emergence and spread through community transmission of a large cluster of BA.1.1 virus.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Finlândia/epidemiologia , Humanos , SARS-CoV-2/genética
5.
Euro Surveill ; 27(16)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451361

RESUMO

Recombinant sequences of the SARS-CoV-2 Omicron variant were detected in surveillance samples collected in north-western Finland in January 2022. We detected 191 samples with an identical genome arrangement in weeks 3 to 11, indicating sustained community transmission. The recombinant lineage has a 5'-end of BA.1, a recombination breakpoint between orf1a and orf1b (nucleotide position 13,296-15,240) and a 3'-end of BA.2 including the S gene. We describe the available genomic and epidemiological data about this currently circulating recombinant XJ lineage.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Finlândia/epidemiologia , Genômica , Humanos , SARS-CoV-2/genética
6.
Emerg Infect Dis ; 27(12): 3137-3141, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34708686

RESUMO

Severe acute respiratory syndrome coronavirus 2 Alpha and Beta variants became dominant in Finland in spring 2021 but had diminished by summer. We used phylogenetic clustering to identify sources of spreading. We found that outbreaks were mostly seeded by a few introductions, highlighting the importance of surveillance and prevention policies.


Assuntos
COVID-19 , SARS-CoV-2 , Finlândia/epidemiologia , Humanos , Incidência , Filogenia
7.
J Antimicrob Chemother ; 76(2): 355-361, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33188415

RESUMO

BACKGROUND: Previous studies showed that the epidemic of carbapenem-resistant Klebsiella pneumoniae (CR-KP) observed in Italy since 2010 was sustained mostly by strains of clonal group (CG) 258 producing KPC-type carbapenemases. In the framework of the National Antibiotic-Resistance Surveillance (AR-ISS), a countrywide survey was conducted in 2016 to explore the evolution of the phenotypic and genotypic characteristics of CR-KP isolates. METHODS: From March to July 2016, hospital laboratories participating in AR-ISS were requested to provide consecutive, non-duplicated CR-KP (meropenem and/or imipenem MIC >1 mg/L) from invasive infections. Antibiotic susceptibility was determined according to EUCAST recommendations. A WGS approach was adopted to characterize the isolates by investigating phylogeny, resistome and virulome. RESULTS: Twenty-four laboratories provided 157 CR-KP isolates, of which 156 were confirmed as K. pneumoniae sensu stricto by WGS and found to carry at least one carbapenemase-encoding gene, corresponding in most cases (96.1%) to blaKPC. MLST- and SNP-based phylogeny revealed that 87.8% of the isolates clustered in four major lineages: CG258 (47.4%), with ST512 as the most common clone, CG307 (19.9%), ST101 (15.4%) and ST395 (5.1%). A close association was identified between lineages and antibiotic resistance phenotypes and genotypes, virulence traits and capsular types. Colistin resistance, mainly associated with mgrB mutations, was common in all major lineages except ST395. CONCLUSIONS: This WGS-based survey showed that, although CG258 remained the most common CR-KP lineage in Italy, a polyclonal population has emerged with the spread of the new high-risk lineages CG307, ST101 and ST395, while KPC remained the most common carbapenemase.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Humanos , Itália/epidemiologia , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , beta-Lactamases/genética
8.
Sci Total Environ ; 943: 173692, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825193

RESUMO

Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.


Assuntos
Aves , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Humanos , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Animais , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Monitoramento Ambiental , Praias , Saúde Única
9.
J Clin Microbiol ; 50(11): 3664-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22972821

RESUMO

Newcastle disease (ND) is a highly contagious, severe disease of poultry caused by pathogenic strains of Newcastle disease virus (NDV; or avian paramyxovirus-1). NDV is endemic in wild birds worldwide and one of the economically most important poultry pathogens. Most of the published strains are outbreak-associated strains, while the apathogenic NDV strains that occur in wild birds, posing a constant threat to poultry with their capability to convert into more virulent forms, have remained less studied. We screened for NDV RNA in cloacal and oropharyngeal samples from wild waterfowl in Finland during the years 2006 to 2010: 39 of 715 birds were positive (prevalence, 5.5%). The partial or full-length F genes of 37 strains were sequenced for phylogenetic purposes. We also characterized viruses derived from three NDV outbreaks in Finland and discuss the relationships between these outbreak-associated and the wild-bird-associated strains. We found that all waterfowl NDV isolates were lentogenic strains of class I or class II genotype I. We also isolated a genetically distinct class I strain (teal/Finland/13111/2008) grouping phylogenetically together with only strain HIECK87191, isolated in Northern Ireland in 1987. Together they seem to form a novel class I genotype genetically differing from other known NDVs by at least 12%.


Assuntos
Surtos de Doenças , Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/genética , Animais , Aves , Cloaca/virologia , Análise por Conglomerados , Finlândia/epidemiologia , Genótipo , Epidemiologia Molecular , Dados de Sequência Molecular , Vírus da Doença de Newcastle/isolamento & purificação , Orofaringe/virologia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
10.
Microorganisms ; 9(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946181

RESUMO

Invasive infections by group B streptococci (iGBS) are the leading cause of sepsis and meningitis in the first three months of life worldwide. The clinical and microbiological characteristics of neonatal and infant iGBS in Italy during the years 2015-2019 were investigated. Voluntary-based surveillance reported 191 cases (67 early-onset (EOD) and 124 late-onset disease (LOD)) and 89 bacterial isolates were received. The main clinical manifestations were sepsis (59.2%) followed by meningitis (21.5%), bacteremia (12.0%) and septic shock (6.3%). Hospitalized preterm babies accounted for one third of iGBS and constituted the most fragile population in terms of mortality (8.2%) and brain damage (16.4%). GBS serotype III was predominant in EOD (56%) and caused almost all LOD (95%). The rate of resistance to clindamycin reached 28.8%. Most of clindamycin-resistant GBS strains (76%) were serotype III-ST17 and possessed the genetic markers of the emerging multidrug resistant (MDR) CC-17 sub-clone. Our data revealed that iGBS is changing since it is increasingly reported as a healthcare-associated infection (22.6%), mainly caused by MDR-CC17. Continuous monitoring of the clinical and microbiological characteristics of iGBS remains of primary importance and it represents, at present, the most effective tool to support prevention strategies and the research on the developing GBS vaccine.

11.
Vaccine ; 38(42): 6533-6538, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32859435

RESUMO

Haemophilus influenzae serotype b (Hib) was the leading cause of bacterial meningitis in children before the implementation of infant immunization with conjugate Hib vaccines. Despite the effectiveness of the vaccine, invasive Hib disease cases (i.e. isolation of Hib from a normally sterile site) are still reported in children. All invasive Hib disease cases in children ≤ 15 years reported through the National Surveillance System of Invasive Bacterial Disease, during 2012-2018 in Italy, were analyzed. Hib PCR-confirmed isolates were subjected to MLST and PFGE analysis. The number of copies of the capb locus, a virulence factor potentially contributing to true vaccine failures (TVFs), was determined by Southern blot analysis. Vaccine effectiveness (VE) was determined using a multiple Poisson regression model. 31 cases of invasive Hib disease in children were reported. Fourteen children were vaccinated (TVFs), 14 were unvaccinated and 2 partially vaccinated (vaccination status was unknown for 1 case). The median age of children was 12 months (range 3 months-15 years). A decrease in vaccination coverage was observed in 2014-2016 (source Ministry of Health), and a rise in incidence was documented from 2016 until 2018, especially in children < 5 years. Vaccine effectiveness was estimated to be 83% (95% CI:45-95). 24 isolates were available. The predominant ST was ST6 (70.8%). Cluster analysis of ST6 isolates by PFGE identified five variants. Six isolates (25%) contained multiple copies of the capb locus distributed among TVFs (30%) and unvaccinated children (16.7%). Our data show that both failures to vaccinate and TVFs are associated with invasive Hib disease in children in Italy, during the vaccination era. Most cases in children ≤ 2 years were vaccine-preventable, since they occurred in unvaccinated subjects (13/21 cases, 62%). No host predisposing factors for TVF were recognized. TVFs were not significantly associated with either specific genotypes or amplification status of the capb locus.


Assuntos
Infecções por Haemophilus , Vacinas Anti-Haemophilus , Haemophilus influenzae tipo b , Criança , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae , Humanos , Lactente , Itália/epidemiologia , Tipagem de Sequências Multilocus , Vacinas Conjugadas
12.
Open Forum Infect Dis ; 6(1): ofy321, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30697571

RESUMO

BACKGROUND: Chikungunya virus is an emerging mosquito-borne pathogen with a wide global distribution. With the severe morbidity that it causes, chikungunya virus is a major public health problem in the affected areas and poses a considerable risk for unaffected areas hosting competent vector populations. In the summer of 2017, Italy experienced a chikungunya virus outbreak that spread in the Lazio region and caused a secondary outbreak in the Calabrian village of Guardavalle, with a final case number of 436. The causative strain was recognized as an Indian Ocean lineage (IOL) virus. METHODS: To understand the underlying genetic and molecular features of the outbreak virus, viruses from mosquito pools and clinical samples were isolated in cell culture and subjected to whole-genome sequencing and genetic analyses. RESULTS: All 8 characterized genomes shared a high sequence identity. A distinct substitution pattern in the Italian 2017 viruses (including mutations in E1, E2, and nsP4) was partly shared with the Pakistani 2016 outbreak viruses. Evolutionary analyses indicate that these 2 recent outbreaks and several geographically widely distributed, travel-associated viruses form a cluster of rapidly emerging Indian-origin IOL viruses. CONCLUSIONS: Our analyses show that the 2017 Italian outbreak virus belongs to a cluster of novel IOL chikungunya viruses originating in India. Their emergence calls for enhanced monitoring and strengthened preparedness measures, including vector control programs and raised awareness among general practitioners in countries potentially at risk.

13.
Virol J ; 5: 35, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18307758

RESUMO

BACKGROUND: Screening wild birds for viral pathogens has become increasingly important. We tested a screening approach based on blood and cloacal and tracheal swabs collected by hunters to study the prevalence of influenza A, paramyxo-, flavi-, and alphaviruses in Finnish wild waterfowl, which has been previously unknown. We studied 310 blood samples and 115 mixed tracheal and cloacal swabs collected from hunted waterfowl in 2006. Samples were screened by RT-PCR and serologically by hemagglutination inhibition (HI) test or enzyme-linked immunosorbent assay (ELISA) for influenza A (FLUAV), type 1 avian paramyxo-(APMV-1), Sindbis (SINV), West Nile (WNV) and tick-borne encephalitis (TBEV) virus infections. RESULTS: FLUAV RNA was found in 13 tracheal/cloacal swabs and seven strains were isolated. Five blood samples were antibody positive. Six APMV-1 RNA-positive samples were found from which four strains were isolated, while two blood samples were antibody positive. None of the birds were positive for flavivirus RNA but three birds had flavivirus antibodies by HI test. No antibodies to SINV were detected. CONCLUSION: We conclude that circulation of both influenza A virus and avian paramyxovirus-1 in Finnish wild waterfowl was documented. The FLUAV and APMV-1 prevalences in wild waterfowl were 11.3% and 5.2% respectively, by this study. The subtype H3N8 was the only detected FLUAV subtype while APMV-1 strains clustered into two distinct lineages. Notably, antibodies to a likely mosquito-borne flavivirus were detected in three samples. The screening approach based on hunted waterfowl seemed reliable for monitoring FLUAV and APMV by RT-PCR from cloacal or tracheal samples, but antibody testing in this format seemed to be of low sensitivity.


Assuntos
Animais Selvagens/virologia , Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Flavivirus/isolamento & purificação , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Vírus da Doença de Newcastle/isolamento & purificação , Animais , Sangue/virologia , Cloaca/virologia , Patos/virologia , Finlândia/epidemiologia , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/virologia , Gansos/virologia , Vírus da Influenza A Subtipo H3N8/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Dados de Sequência Molecular , Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Manejo de Espécimes , Traqueia/virologia
14.
Infect Ecol Epidemiol ; 7(1): 1408360, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30788065

RESUMO

Introduction: Migratory birds act as hosts for a number of zoonotic viruses, and have the ability to disperse these viruses to distant geographic locations. Coronaviruses (CoVs) represent a family of zoonotic viruses with wide variety of animal hosts, including birds and humans. The infections caused by coronaviruses vary from mild to severe, depending on the viral species and the host. Since the coronaviruses exhibit extraordinary large RNA genome, also the rate of homologous recombination is high, which in turn contributes to the genetic diversity and interspecies host-switches of CoVs. The emergence of novel CoVs has been rich during the last decades, and wild birds seem to serve as reservoirs for a variety of CoV strains. We examined the CoVs circulating among wild birds in Finland. Materials and methods: Samples (cloacal swab, tracheal swab, oropharyngeal swab, or tissue) representing 61 bird species were collected during 2010-2013, and examined by RT-PCR targeting the RdRp gene for the presence of CoV RNA. Results: Altogether 51/939 (5.4%) of the examined birds were found positive by RT-PCR. Diverse gamma- and deltacoronavirus sequences were detected. Discussion: Gamma- and deltacoronaviruses circulate among wild birds in Finland. The number of CoV-positive birds detected each year varies greatly.

15.
J Wildl Dis ; 53(3): 561-571, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28384060

RESUMO

Influenza A viruses (IAVs) of the subtypes H13 and H16 are primarily found in gulls ( Larus spp., order Charadriiformes). Although the gull-adapted subtypes replicate efficiently during infection, gulls usually remain apparently healthy during infection. Avian influenza virus isolates are generally separated into two distinct populations, North American and Eurasian, because of the limited gene flow between the continents. Reassortment between these lineages does occur occasionally; however, direct intercontinental transmission of all eight gene segments is rare. Extensive research has been done to understand the ecology of IAV subtypes that naturally circulate in ducks (order Anseriformes), but the ecology of H13 and H16 IAVs in gulls remains far less studied. In Finland, gulls were screened for IAVs for passive (dead and diseased gulls) and active (clinically healthy gulls) surveillance purposes during the years 2005-10. During that period, 11 H13, two H16 viruses, and one H3N8 IAV were detected. We sequenced partial and full-length hemagglutinin genes of these gull-origin IAVs for phylogenetic assessments. All but one of the H13 genes clustered together with northern European and northeastern Asian viruses, whereas one virus clustered with North American viruses. Interestingly, a high rate (10/14) of these low-pathogenic IAVs was detected in dead or diseased gulls. The atypical clinical status of the IAV-positive gulls and previous observations of circovirus-like inclusion bodies in diseased gulls during autopsies, led us to screen for concurrent circovirus infections in our samples. The DNA of circovirus, an immunosuppressive pathogen of both birds and mammals, was detected in 54% (7/13) of the tested IAV-positive gulls, whereas only 25% (14/56) of our panel of IAV-negative gulls tested positive by circovirus PCR.


Assuntos
Charadriiformes/virologia , Infecções por Circoviridae/veterinária , Vírus da Influenza A/genética , Animais , Finlândia , Vírus da Influenza A Subtipo H3N8/genética , Influenza Aviária , Filogenia
16.
Vet Microbiol ; 172(3-4): 548-54, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25042528

RESUMO

Low pathogenic avian influenza viruses are maintained in wild bird populations throughout the world. Avian influenza viruses are characterized by their efficient ability to reassort and adapt, which enables them to cross the species barrier and enhances their zoonotic potential. Influenza viruses of the H9N2 subtype appear endemic among poultry in Eurasia. They usually exist as low-pathogenic strains and circulate between wild bird populations, poultry and birds sold at live bird markets. Direct transmission of H9N2 viruses, with receptor specificities similar to human influenza strains, to pigs and humans has been reported on several occasions. H9N2 virus was first encountered in Finland in 2009, during routine screening of hunted wild waterfowl. The next year, H9N2 influenza viruses were isolated from wild birds on four occasions, including once from a farmed mallard. We have investigated the relationship between the reared and wild bird isolates by sequencing the hemagglutinin and the neuraminidase genes of the Finnish H9N2 viruses. Nucleotide sequence comparison and phylogenetic analyses indicate that H9N2 was transmitted from wild birds to reared birds in 2010, and that highly identical strains have been circulating in Europe during the last few years.


Assuntos
Aves/virologia , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/virologia , Epidemiologia Molecular , Animais , Surtos de Doenças/veterinária , Finlândia/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Filogenia
17.
PLoS One ; 8(12): e85799, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376896

RESUMO

The BamA protein is the key component of the Bam complex, the assembly machinery for outer membrane proteins (OMP) in gram-negative bacteria. We previously demonstrated that BamA recognizes its OMP substrates in a species-specific manner in vitro. In this work, we further studied species specificity in vivo by testing the functioning of BamA homologs of the proteobacteria Neisseria meningitidis, Neisseria gonorrhoeae, Bordetella pertussis, Burkholderia mallei, and Escherichia coli in E. coli and in N. meningitidis. We found that no BamA functioned in another species than the authentic one, except for N. gonorrhoeae BamA, which fully complemented a N. meningitidis bamA mutant. E. coli BamA was not assembled into the N. meningitidis outer membrane. In contrast, the N. meningitidis BamA protein was assembled into the outer membrane of E. coli to a significant extent and also associated with BamD, an essential accessory lipoprotein of the Bam complex.Various chimeras comprising swapped N-terminal periplasmic and C-terminal membrane-embedded domains of N. meningitidis and E. coli BamA proteins were also not functional in either host, although some of them were inserted in the OM suggesting that the two domains of BamA need to be compatible in order to function. Furthermore, conformational analysis of chimeric proteins provided evidence for a 16-stranded ß-barrel conformation of the membrane-embedded domain of BamA.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Bactérias Gram-Negativas/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Bactérias Gram-Negativas/metabolismo , Immunoblotting , Plasmídeos/genética , Conformação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA