Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Annu Rev Biochem ; 92: 115-144, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001137

RESUMO

Transcription-coupled repair (TCR), discovered as preferential nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers located in transcribed mammalian genes compared to those in nontranscribed regions of the genome, is defined as faster repair of the transcribed strand versus the nontranscribed strand in transcribed genes. The phenomenon, universal in model organisms including Escherichia coli, yeast, Arabidopsis, mice, and humans, involves a translocase that interacts with both RNA polymerase stalled at damage in the transcribed strand and nucleotide excision repair proteins to accelerate repair. Drosophila, a notable exception, exhibits TCR but lacks an obvious TCR translocase. Mutations inactivating TCR genes cause increased damage-induced mutagenesis in E. coli and severe neurological and UV sensitivity syndromes in humans. To date, only E. coli TCR has been reconstituted in vitro with purified proteins. Detailed investigations of TCR using genome-wide next-generation sequencing methods, cryo-electron microscopy, single-molecule analysis, and other approaches have revealed fascinating mechanisms.


Assuntos
Escherichia coli , Transcrição Gênica , Humanos , Animais , Camundongos , Escherichia coli/genética , Escherichia coli/metabolismo , Microscopia Crioeletrônica , Reparo do DNA , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Mamíferos/genética
2.
PLoS Genet ; 20(7): e1011365, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028758

RESUMO

Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5'-capping or 3'-polyadenylation). Here, we have performed eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps in a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), and a strain that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.

3.
Nucleic Acids Res ; 52(2): 677-689, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37994737

RESUMO

After reconstitution of nucleotide excision repair (excision repair) with XPA, RPA, XPC, TFIIH, XPF-ERCC1 and XPG, it was concluded that these six factors are the minimal essential components of the excision repair machinery. All six factors are highly conserved across diverse organisms spanning yeast to humans, yet no identifiable homolog of the XPA gene exists in many eukaryotes including green plants. Nevertheless, excision repair is reported to be robust in the XPA-lacking organism, Arabidopsis thaliana, which raises a fundamental question of whether excision repair could occur without XPA in other organisms. Here, we performed a phylogenetic analysis of XPA across all species with annotated genomes and then quantitatively measured excision repair in the absence of XPA using the sensitive whole-genome qXR-Seq method in human cell lines and two model organisms, Caenorhabditis elegans and Drosophila melanogaster. We find that although the absence of XPA results in inefficient excision repair and UV-sensitivity in humans, flies, and worms, excision repair of UV-induced DNA damage is detectable over background. These studies have yielded a significant discovery regarding the evolution of XPA protein and its mechanistic role in nucleotide excision repair.


Assuntos
Reparo por Excisão , Proteína de Xeroderma Pigmentoso Grupo A , Animais , Humanos , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/metabolismo , Nucleotídeos/metabolismo , Filogenia , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Plantas/metabolismo , Evolução Molecular
4.
Nucleic Acids Res ; 51(12): 6238-6245, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37144462

RESUMO

Nucleotide excision repair removes UV-induced DNA damage through two distinct sub-pathways, global repair and transcription-coupled repair (TCR). Numerous studies have shown that in human and other mammalian cell lines that the XPC protein is required for repair of DNA damage from nontranscribed DNA via global repair and the CSB protein is required for repair of lesions from transcribed DNA via TCR. Therefore, it is generally assumed that abrogating both sub-pathways with an XPC-/-/CSB-/- double mutant would eliminate all nucleotide excision repair. Here we describe the construction of three different XPC-/-/CSB-/- human cell lines that, contrary to expectations, perform TCR. The XPC and CSB genes were mutated in cell lines derived from Xeroderma Pigmentosum patients as well as from normal human fibroblasts and repair was analyzed at the whole genome level using the very sensitive XR-seq method. As predicted, XPC-/- cells exhibited only TCR and CSB-/- cells exhibited only global repair. However, the XPC-/-/CSB-/- double mutant cell lines, although having greatly reduced repair, exhibited TCR. Mutating the CSA gene to generate a triple mutant XPC-/-/CSB-/-/CSA-/- cell line eliminated all residual TCR activity. Together, these findings provide new insights into the mechanistic features of mammalian nucleotide excision repair.


Assuntos
Reparo do DNA , Xeroderma Pigmentoso , Animais , Humanos , Reparo do DNA/genética , Dano ao DNA , Xeroderma Pigmentoso/genética , Linhagem Celular , Receptores de Antígenos de Linfócitos T/genética , Raios Ultravioleta , Mamíferos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(35): e2210176119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994676

RESUMO

Nucleotide excision repair is the principal mechanism for removing bulky DNA adducts from the mammalian genome, including those induced by environmental carcinogens such as UV radiation, and anticancer drugs such as cisplatin. Surprisingly, we found that the widely used thymidine analog EdU is a substrate for excision repair when incorporated into the DNA of replicating cells. A number of thymidine analogs were tested, and only EdU was a substrate for excision repair. EdU excision was absent in repair-deficient cells, and in vitro, DNA duplexes bearing EdU were also substrates for excision by mammalian cell-free extracts. We used the excision repair sequencing (XR-seq) method to map EdU repair in the human genome at single-nucleotide resolution and observed that EdU was excised throughout the genome and was subject to transcription-coupled repair as evidenced by higher repair rates in the transcribed strand (TS) relative to the nontranscribed strand (NTS) in transcriptionally active genes. These properties of EdU, combined with its cellular toxicity and ability to cross the blood-brain barrier, make it a potential candidate for treating cancers of the brain, a tissue that typically demonstrates limited replication in adults.


Assuntos
Dano ao DNA , Reparo do DNA , Desoxiuridina , DNA/química , DNA/genética , Desoxiuridina/análogos & derivados , Genoma Humano , Humanos , Timidina/análogos & derivados , Transcrição Gênica , Raios Ultravioleta
6.
PLoS Genet ; 18(9): e1010426, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36155646

RESUMO

Nucleotide excision repair is the primary repair mechanism that removes UV-induced DNA lesions in placentals. Unrepaired UV-induced lesions could result in mutations during DNA replication. Although the mutagenesis of pyrimidine dimers is reasonably well understood, the direct effects of replication fork progression on nucleotide excision repair are yet to be clarified. Here, we applied Damage-seq and XR-seq techniques and generated replication maps in synchronized UV-treated HeLa cells. The results suggest that ongoing replication stimulates local repair in both early and late replication domains. Additionally, it was revealed that lesions on lagging strand templates are repaired slower in late replication domains, which is probably due to the imbalanced sequence context. Asymmetric relative repair is in line with the strand bias of melanoma mutations, suggesting a role of exogenous damage, repair, and replication in mutational strand asymmetry.


Assuntos
Dímeros de Pirimidina , Raios Ultravioleta , DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Células HeLa , Humanos , Dímeros de Pirimidina/genética , Raios Ultravioleta/efeitos adversos
7.
J Biol Chem ; 299(3): 102929, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682495

RESUMO

Circadian rhythmicity is maintained by a set of core clock proteins including the transcriptional activators CLOCK and BMAL1, and the repressors PER (PER1, PER2, and PER3), CRY (CRY1 and CRY2), and CK1δ. In mice, peak expression of the repressors in the early morning reduces CLOCK- and BMAL1-mediated transcription/translation of the repressors themselves. By late afternoon the repressors are largely depleted by degradation, and thereby their expression is reactivated in a cycle repeated every 24 h. Studies have characterized a variety of possible protein interactions and complexes associated with the function of this transcription-translation feedback loop. Our prior investigation suggested there were two circadian complexes responsible for rhythmicity, one containing CLOCK-BMAL and the other containing PER2, CRY1, and CK1δ. In this investigation, we acquired data from glycerol gradient centrifugation and gel filtration chromatography of mouse liver extracts obtained at different circadian times to further characterize circadian complexes. In addition, anti-PER2 and anti-CRY1 immunoprecipitates obtained from the same extracts were analyzed by liquid chromatography-tandem mass spectrometry to identify components of circadian complexes. Our results confirm the presence of discrete CLOCK-BMAL1 and PER-CRY-CK1δ complexes at the different circadian time points, provide masses of 255 and 707 kDa, respectively, for these complexes, and indicate that these complexes are composed principally of the core circadian proteins.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Perfilação da Expressão Gênica , Retroalimentação Fisiológica
8.
J Biol Chem ; 299(3): 103009, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775124

RESUMO

In vitro and in vivo experiments with Escherichia coli have shown that the Mfd translocase is responsible for transcription-coupled repair, a subpathway of nucleotide excision repair involving the faster rate of repair of the transcribed strand than the nontranscribed strand. Even though the mfd gene is conserved in all bacterial lineages, there is only limited information on whether it performs the same function in other bacterial species. Here, by genome scale analysis of repair of UV-induced cyclobutane pyrimidine dimers, we find that the Mfd protein is the transcription-repair coupling factor in Mycobacterium smegmatis. This finding, combined with the inverted strandedness of UV-induced mutations in WT and mfd-E. coli and Bacillus subtilis indicate that the Mfd protein is the universal transcription-repair coupling factor in bacteria.


Assuntos
Fatores de Transcrição , Transcrição Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reparo do DNA , Bactérias/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(35): 21609-21617, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817420

RESUMO

The circadian clock is a global regulatory mechanism that controls the expression of 50 to 80% of transcripts in mammals. Some of the genes controlled by the circadian clock are oncogenes or tumor suppressors. Among these Myc has been the focus of several studies which have investigated the effect of clock genes and proteins on Myc transcription and MYC protein stability. Other studies have focused on effects of Myc mutation or overproduction on the circadian clock in comparison to their effects on cell cycle progression and tumorigenesis. Here we have used mice with mutations in the essential clock genes Bmal1, Cry1, and Cry2 to gain further insight into the effect of the circadian clock on this important oncogene/oncoprotein and tumorigenesis. We find that mutation of both Cry1 and Cry2, which abolishes the negative arm of the clock transcription-translation feedback loop (TTFL), causes down-regulation of c-MYC, and mutation of Bmal1, which abolishes the positive arm of TTFL, causes up-regulation of the c-MYC protein level in mouse spleen. These findings must be taken into account in models of the clock disruption-cancer connection.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas de Ciclo Celular/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/metabolismo , Feminino , Regulação da Expressão Gênica , Genes myc , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oncogenes , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
10.
J Biol Chem ; 296: 100581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33771559

RESUMO

The formation of UV-induced DNA damage and its repair are influenced by many factors that modulate lesion formation and the accessibility of repair machinery. However, it remains unknown which genomic sites are prioritized for immediate repair after UV damage induction, and whether these prioritized sites overlap with hotspots of UV damage. We identified the super hotspots subject to the earliest repair for (6-4) pyrimidine-pyrimidone photoproduct by using the eXcision Repair-sequencing (XR-seq) method. We further identified super coldspots for (6-4) pyrimidine-pyrimidone photoproduct repair and super hotspots for cyclobutane pyrimidine dimer repair by analyzing available XR-seq time-course data. By integrating datasets of XR-seq, Damage-seq, adductSeq, and cyclobutane pyrimidine dimer-seq, we show that neither repair super hotspots nor repair super coldspots overlap hotspots of UV damage. Furthermore, we demonstrate that repair super hotspots are significantly enriched in frequently interacting regions and superenhancers. Finally, we report our discovery of an enrichment of cytosine in repair super hotspots and super coldspots. These findings suggest that local DNA features together with large-scale chromatin features contribute to the orders of magnitude variability in the rates of UV damage repair.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Genoma Humano/genética , Genoma Humano/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Humanos , Dímeros de Pirimidina/metabolismo
11.
J Biol Chem ; 297(3): 101068, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375638

RESUMO

The circadian clock controls the expression of nearly 50% of protein coding genes in mice and most likely in humans as well. Therefore, disruption of the circadian clock is presumed to have serious pathological effects including cancer. However, epidemiological studies on individuals with circadian disruption because of night shift or rotating shift work have produced contradictory data not conducive to scientific consensus as to whether circadian disruption increases the incidence of breast, ovarian, prostate, or colorectal cancers. Similarly, genetically engineered mice with clock disruption do not exhibit spontaneous or radiation-induced cancers at higher incidence than wild-type controls. Because many cellular functions including the cell cycle and cell division are, at least in part, controlled by the molecular clock components (CLOCK, BMAL1, CRYs, PERs), it has also been expected that appropriate timing of chemotherapy may increase the efficacy of chemotherapeutic drugs and ameliorate their side effect. However, empirical attempts at chronochemotherapy have not produced beneficial outcomes. Using mice without and with human tumor xenografts, sites of DNA damage and repair following treatment with the anticancer drug cisplatin have been mapped genome-wide at single nucleotide resolution and as a function of circadian time. The data indicate that mechanism-based studies such as these may provide information necessary for devising rational chronochemotherapy regimens.


Assuntos
Carcinogênese/efeitos dos fármacos , Cronofarmacocinética , Relógios Circadianos/fisiologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Proteínas CLOCK/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Ciclo Celular/fisiologia , Fenômenos Cronobiológicos , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Cisplatino/farmacocinética , Cisplatino/farmacologia , Criptocromos/genética , Criptocromos/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/genética , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Biol Chem ; 295(50): 17374-17380, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087442

RESUMO

In nucleotide excision repair, bulky DNA lesions such as UV-induced cyclobutane pyrimidine dimers are removed from the genome by concerted dual incisions bracketing the lesion, followed by gap filling and ligation. So far, two dual-incision patterns have been discovered: the prokaryotic type, which removes the damage in 11-13-nucleotide-long oligomers, and the eukaryotic type, which removes the damage in 24-32-nucleotide-long oligomers. However, a recent study reported that the UvrC protein of Mycobacterium tuberculosis removes damage in a manner analogous to yeast and humans in a 25-mer oligonucleotide arising from incisions at 15 nt from the 3´ end and 9 nt from the 5´ end flanking the damage. To test this model, we used the in vivo excision assay and the excision repair sequencing genome-wide repair mapping method developed in our laboratory to determine the repair pattern and genome-wide repair map of Mycobacterium smegmatis We find that M. smegmatis, which possesses homologs of the Escherichia coli uvrA, uvrB, and uvrC genes, removes cyclobutane pyrimidine dimers from the genome in a manner identical to the prokaryotic pattern by incising 7 nt 5´ and 3 or 4 nt 3´ to the photoproduct, and performs transcription-coupled repair in a manner similar to E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Mycobacterium smegmatis/metabolismo , Oligonucleotídeos/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Endodesoxirribonucleases/genética , Proteínas de Escherichia coli/genética , Mycobacterium smegmatis/genética , Oligonucleotídeos/genética
13.
J Biol Chem ; 294(48): 18092-18098, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31624146

RESUMO

Previous work with the classic T4 endonuclease V digestion of DNA from irradiated Drosophila cells followed by Southern hybridization led to the conclusion that Drosophila lacks transcription-coupled repair (TCR). This conclusion was reinforced by the Drosophila Genome Project, which revealed that Drosophila lacks Cockayne syndrome WD repeat protein (CSA), CSB, or UV-stimulated scaffold protein A (UVSSA) homologs, whose orthologs are present in eukaryotes ranging from Arabidopsis to humans that carry out TCR. A recently developed in vivo excision assay and the excision repair-sequencing (XR-Seq) method have enabled genome-wide analysis of nucleotide excision repair in various organisms at single-nucleotide resolution and in a strand-specific manner. Using these methods, we have discovered that Drosophila S2 cells carry out robust TCR comparable with that observed in mammalian cells. Our findings provide critical new insights into the mechanisms of TCR among various different species.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA , Reparo do DNA , Proteínas de Drosophila , Animais , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster
14.
Proc Natl Acad Sci U S A ; 113(17): 4706-10, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071131

RESUMO

Plants use light for photosynthesis and for various signaling purposes. The UV wavelengths in sunlight also introduce DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)PPs] that must be repaired for the survival of the plant. Genome sequencing has revealed the presence of genes for both CPD and (6-4)PP photolyases, as well as genes for nucleotide excision repair in plants, such as Arabidopsis and rice. Plant photolyases have been purified, characterized, and have been shown to play an important role in plant survival. In contrast, even though nucleotide excision repair gene homologs have been found in plants, the mechanism of nucleotide excision repair has not been investigated. Here we used the in vivo excision repair assay developed in our laboratory to demonstrate that Arabidopsis removes CPDs and (6-4)PPs by a dual-incision mechanism that is essentially identical to the mechanism of dual incisions in humans and other eukaryotes, in which oligonucleotides with a mean length of 26-27 nucleotides are removed by incising ∼20 phosphodiester bonds 5' and 5 phosphodiester bonds 3' to the photoproduct.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , DNA de Plantas/genética , DNA de Plantas/efeitos da radiação , Desoxirribodipirimidina Fotoliase/genética , Dímeros de Pirimidina/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Linhagem Celular , Reparo do DNA/efeitos da radiação , Desoxirribodipirimidina Fotoliase/efeitos da radiação , Relação Dose-Resposta à Radiação , Dímeros de Pirimidina/efeitos da radiação , Pirimidinonas/efeitos da radiação , Doses de Radiação , Raios Ultravioleta
15.
J Biol Chem ; 290(19): 12184-94, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25792739

RESUMO

The mechanism by which ultraviolet (UV) wavelengths of sunlight trigger or exacerbate the symptoms of the autoimmune disorder lupus erythematosus is not known but may involve a role for the innate immune system. Here we show that UV radiation potentiates STING (stimulator of interferon genes)-dependent activation of the immune signaling transcription factor interferon regulatory factor 3 (IRF3) in response to cytosolic DNA and cyclic dinucleotides in keratinocytes and other human cells. Furthermore, we find that modulation of this innate immune response also occurs with UV-mimetic chemical carcinogens and in a manner that is independent of DNA repair and several DNA damage and cell stress response signaling pathways. Rather, we find that the stimulation of STING-dependent IRF3 activation by UV is due to apoptotic signaling-dependent disruption of ULK1 (Unc51-like kinase 1), a pro-autophagic protein that negatively regulates STING. Thus, deregulation of ULK1 signaling by UV-induced DNA damage may contribute to the negative effects of sunlight UV exposure in patients with autoimmune disorders.


Assuntos
Imunidade Inata , Interferons/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Raios Ultravioleta , Apoptose , Autoimunidade , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Linhagem Celular , Dano ao DNA , Reparo do DNA , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Queratinócitos/metabolismo , Fosforilação , Interferência de RNA , Transdução de Sinais
16.
J Biol Chem ; 290(50): 29801-7, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26491008

RESUMO

Ribonucleotides are incorporated into the genome during DNA replication. The enzyme RNase H2 plays a critical role in targeting the removal of these ribonucleotides from DNA, and defects in RNase H2 activity are associated with both genomic instability and the human autoimmune/inflammatory disorder Aicardi-Goutières syndrome. Whether additional general DNA repair mechanisms contribute to ribonucleotide removal from DNA in human cells is not known. Because of its ability to act on a wide variety of substrates, we examined a potential role for canonical nucleotide excision repair in the removal of ribonucleotides from DNA. However, using highly sensitive dual incision/excision assays, we find that ribonucleotides are not efficiently targeted by the human nucleotide excision repair system in vitro or in cultured human cells. These results suggest that nucleotide excision repair is unlikely to play a major role in the cellular response to ribonucleotide incorporation in genomic DNA in human cells.


Assuntos
Reparo do DNA , DNA/metabolismo , Ribonucleotídeos/metabolismo , Linhagem Celular Tumoral , Humanos
17.
Biochemistry ; 54(2): 110-23, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25302769

RESUMO

The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock-DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs.


Assuntos
Antineoplásicos/administração & dosagem , Relógios Circadianos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/metabolismo , Cronofarmacoterapia , Humanos , Neoplasias/epidemiologia , Neoplasias/metabolismo , Fatores de Risco
18.
J Biol Chem ; 289(8): 5074-82, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24403078

RESUMO

DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5' to 3' exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5' to 3' exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Humanos , Cinética , Camundongos , Modelos Biológicos , Fosforilação , Proteína de Replicação A/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
19.
J Biol Chem ; 288(26): 18903-10, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23696651

RESUMO

TopBP1 (topoisomerase IIß-binding protein 1) is a dual replication/checkpoint protein. Treslin/Ticrr, an essential replication protein, was discovered as a binding partner for TopBP1 and also in a genetic screen for checkpoint regulators in zebrafish. Treslin is phosphorylated by CDK2/cyclin E in a cell cycle-dependent manner, and its phosphorylation state dictates its interaction with TopBP1. The role of Treslin in the initiation of DNA replication has been partially elucidated; however, its role in the checkpoint response remained elusive. In this study, we show that Treslin stimulates ATR phosphorylation of Chk1 both in vitro and in vivo in a TopBP1-dependent manner. Moreover, we show that the phosphorylation state of Treslin at Ser-1000 is important for its checkpoint activity. Overall, our results indicate that, like TopBP1, Treslin is a dual replication/checkpoint protein that directly participates in ATR-mediated checkpoint signaling.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Quinase 1 do Ponto de Checagem , Dano ao DNA , Replicação do DNA , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Mutação , Células NIH 3T3 , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
20.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37904932

RESUMO

Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5'-capping or 3'-polyadenylation). Here, we have performed the eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps from a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), or one that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA