Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Essays Biochem ; 67(3): 443-454, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36912209

RESUMO

Non-carbohydrate modifications such as acetylations are widespread in food stuffs as well as they play important roles in diverse biological processes. These modifications meet the gut environment and are removed from their carbohydrate substrates by the resident microbiota. Among the most abundant modifications are O-acetylations, contributing to polysaccharides physico-chemical properties such as viscosity and gelling ability, as well as reducing accessibility for glycosyl hydrolases, and thus hindering polysaccharide degradation. Of particular note, O-acetylations increase the overall complexity of a polymer, thus requiring a more advanced degrading machinery for microbes to utilize it. This minireview describes acetylesterases from the gut microbiota that deacetylate various food polysaccharides, either as natural components of food, ingredients, stabilizers of microbial origin, or as part of microbes for food and beverage preparations. These enzymes include members belonging to at least 8 families in the CAZy database, as well as a large number of biochemically characterized esterases that have not been classified yet. Despite different structural folds, most of these acetylesterases have a common acid-base mechanism and belong to the SGNH hydrolase superfamily. We highlight examples of acetylesterases that are highly specific to one substrate and to the position of the acetyl group on the glycosyl residue of the carbohydrate, while other members that have more broad substrate specificity. Current research aimed at unveiling the functions and regioselectivity of acetylesterases will help providing fundamental mechanistic understanding on how dietary components are utilized in the human gut and will aid developing applications of these enzymes to manufacture novel industrial products.


Assuntos
Esterases , Microbioma Gastrointestinal , Humanos , Esterases/química , Esterases/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
2.
mBio ; 12(3): e0362820, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061597

RESUMO

ß-Mannans are hemicelluloses that are abundant in modern diets as components in seed endosperms and common additives in processed food. Currently, the collective understanding of ß-mannan saccharification in the human colon is limited to a few keystone species, which presumably liberate low-molecular-weight mannooligosaccharide fragments that become directly available to the surrounding microbial community. Here, we show that a dominant butyrate producer in the human gut, Faecalibacterium prausnitzii, is able to acquire and degrade various ß-mannooligosaccharides (ß-MOS), which are derived by the primary mannanolytic activity of neighboring gut microbiota. Detailed biochemical analyses of selected protein components from their two ß-MOS utilization loci (F. prausnitzii ß-MOS utilization loci [FpMULs]) supported a concerted model whereby the imported ß-MOS are stepwise disassembled intracellularly by highly adapted enzymes. Coculturing experiments of F. prausnitzii with the primary degraders Bacteroides ovatus and Roseburia intestinalis on polymeric ß-mannan resulted in syntrophic growth, thus confirming the high efficiency of the FpMULs' uptake system. Genomic comparison with human F. prausnitzii strains and analyses of 2,441 public human metagenomes revealed that FpMULs are highly conserved and distributed worldwide. Together, our results provide a significant advance in the knowledge of ß-mannan metabolism and the degree to which its degradation is mediated by cross-feeding interactions between prominent beneficial microbes in the human gut. IMPORTANCE Commensal butyrate-producing bacteria belonging to the Firmicutes phylum are abundant in the human gut and are crucial for maintaining health. Currently, insight is lacking into how they target otherwise indigestible dietary fibers and into the trophic interactions they establish with other glycan degraders in the competitive gut environment. By combining cultivation, genomic, and detailed biochemical analyses, this work reveals the mechanism enabling F. prausnitzii, as a model Ruminococcaceae within Firmicutes, to cross-feed and access ß-mannan-derived oligosaccharides released in the gut ecosystem by the action of primary degraders. A comprehensive survey of human gut metagenomes shows that FpMULs are ubiquitous in human populations globally, highlighting the importance of microbial metabolism of ß-mannans/ß-MOS as a common dietary component. Our findings provide a mechanistic understanding of the ß-MOS utilization capability by F. prausnitzii that may be exploited to select dietary formulations specifically boosting this beneficial symbiont, and thus butyrate production, in the gut.


Assuntos
Faecalibacterium prausnitzii/genética , Faecalibacterium prausnitzii/metabolismo , Microbioma Gastrointestinal/genética , Mananas/metabolismo , Oligossacarídeos/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Colo/microbiologia , Dieta , Faecalibacterium prausnitzii/crescimento & desenvolvimento , Microbioma Gastrointestinal/fisiologia , Humanos , Mananas/classificação , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA