Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38264995

RESUMO

The basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor (TF) MYC is in large part an intrinsically disordered oncoprotein. In complex with its obligate heterodimerization partner MAX, MYC preferentially binds E-Box DNA sequences (CANNTG). At promoters containing these sequence motifs, MYC controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. A vast network of proteins in turn regulates MYC function via intermolecular interactions. In this work, we establish another layer of MYC regulation by intramolecular interactions. We used nuclear magnetic resonance (NMR) spectroscopy to identify and map multiple binding sites for the C-terminal MYC:MAX DNA-binding domain (DBD) on the intrinsically disordered regions (IDRs) in the MYC N-terminus. We find that these binding events in trans are driven by electrostatic attraction, that they have distinct affinities, and that they are competitive with DNA binding. Thereby, we observe the strongest effects for the N-terminal MYC box 0 (Mb0), a conserved motif involved in MYC transactivation and target gene induction. We prepared recombinant full-length MYC:MAX complex and demonstrate that the interactions identified in this work are also relevant in cis, i.e., as intramolecular interactions. These findings are supported by surface plasmon resonance (SPR) experiments, which revealed that intramolecular IDR:DBD interactions in MYC decelerate the association of MYC:MAX complexes to DNA. Our work offers new insights into how bHLH-LZ TFs are regulated by intramolecular interactions, which open up new possibilities for drug discovery.

2.
Magn Reson Chem ; 62(9): 639-647, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38785031

RESUMO

The distinction of enantiomers based on residual anisotropic parameters obtained by alignment in chiral poly-γ-benzyl-L-glutamate (PBLG) is among the strongest in high-resolution NMR spectroscopy. However, large variations in enantiodifferentiation among different solutes are frequently observed. One hypothesis is that the formation of hydrogen bonds between solute and PBLG is important for the distinction of enantiomers. With a small set of three almost spherical enantiomeric pairs, for which 1DCH residual dipolar couplings are measured, we address this issue in a systematic way: borneol contains a single functional group that can act as a hydrogen bond donor, camphor has a single group that may act as a hydrogen bond acceptor, and quinuclidinol can act as both hydrogen bond donor and acceptor. The results are unambiguous: although camphor shows low enantiodifferentiation with PBLG and alignment that can be predicted well by the purely steric TRAMITE approach, the distinction of enantiomers for the other enantiomeric pairs is significantly higher with alignment properties that must involve a specific interaction in addition to steric alignment.

3.
J Am Chem Soc ; 142(9): 4445-4455, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32064871

RESUMO

The lipopolysaccharide biosynthesis pathway is considered an attractive drug target against the rising threat of multi-drug-resistant Gram-negative bacteria. Here, we report two novel small-molecule inhibitors (compounds 1 and 2) of the acyltransferase LpxA, the first enzyme in the lipopolysaccharide biosynthesis pathway. We show genetically that the antibacterial activities of the compounds against efflux-deficient Escherichia coli are mediated by LpxA inhibition. Consistently, the compounds inhibited the LpxA enzymatic reaction in vitro. Intriguingly, using biochemical, biophysical, and structural characterization, we reveal two distinct mechanisms of LpxA inhibition; compound 1 is a substrate-competitive inhibitor targeting apo LpxA, and compound 2 is an uncompetitive inhibitor targeting the LpxA/product complex. Compound 2 exhibited more favorable biological and physicochemical properties than compound 1 and was optimized using structural information to achieve improved antibacterial activity against wild-type E. coli. These results show that LpxA is a promising antibacterial target and imply the advantages of targeting enzyme/product complexes in drug discovery.


Assuntos
Aciltransferases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Pirazóis/farmacologia , Aciltransferases/metabolismo , Antibacterianos/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Imidazóis/metabolismo , Testes de Sensibilidade Microbiana , Ligação Proteica , Pirazóis/metabolismo
4.
Angew Chem Int Ed Engl ; 59(35): 14809-14817, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32363632

RESUMO

Fragment-based lead discovery has become a fundamental approach to identify ligands that efficiently interact with disease-relevant targets. Among the numerous screening techniques, fluorine-detected NMR has gained popularity owing to its high sensitivity, robustness, and ease of use. To effectively explore chemical space, a universal NMR experiment, a rationally designed fragment library, and a sample composition optimized for a maximal number of compounds and minimal measurement time are required. Here, we introduce a comprehensive method that enabled the efficient assembly of a high-quality and diverse library containing nearly 4000 fragments and screening for target-specific binders within days. At the core of the approach is a novel broadband relaxation-edited NMR experiment that covers the entire chemical shift range of drug-like 19 F motifs in a single measurement. Our approach facilitates the identification of diverse binders and the fast ligandability assessment of new targets.

5.
Nat Chem Biol ; 13(4): 381-388, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28135235

RESUMO

Polycomb repressive complex 2 (PRC2) consists of three core subunits, EZH2, EED and SUZ12, and plays pivotal roles in transcriptional regulation. The catalytic subunit EZH2 methylates histone H3 lysine 27 (H3K27), and its activity is further enhanced by the binding of EED to trimethylated H3K27 (H3K27me3). Small-molecule inhibitors that compete with the cofactor S-adenosylmethionine (SAM) have been reported. Here we report the discovery of EED226, a potent and selective PRC2 inhibitor that directly binds to the H3K27me3 binding pocket of EED. EED226 induces a conformational change upon binding EED, leading to loss of PRC2 activity. EED226 shows similar activity to SAM-competitive inhibitors in blocking H3K27 methylation of PRC2 target genes and inducing regression of human lymphoma xenograft tumors. Interestingly, EED226 also effectively inhibits PRC2 containing a mutant EZH2 protein resistant to SAM-competitive inhibitors. Together, we show that EED226 inhibits PRC2 activity via an allosteric mechanism and offers an opportunity for treatment of PRC2-dependent cancers.


Assuntos
Antineoplásicos/farmacologia , Histonas/metabolismo , Lisina/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Sulfonas/química , Sulfonas/farmacologia , Triazóis/química , Triazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Histonas/química , Humanos , Lisina/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Relação Estrutura-Atividade , Sulfonas/metabolismo , Triazóis/metabolismo , Células Tumorais Cultivadas
6.
J Am Chem Soc ; 139(49): 17824-17833, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29190085

RESUMO

Structure-based drug design is an integral part of modern day drug discovery and requires detailed structural characterization of protein-ligand interactions, which is most commonly performed by X-ray crystallography. However, the success rate of generating these costructures is often variable, in particular when working with dynamic proteins or weakly binding ligands. As a result, structural information is not routinely obtained in these scenarios, and ligand optimization is challenging or not pursued at all, representing a substantial limitation in chemical scaffolds and diversity. To overcome this impediment, we have developed a robust NMR restraint guided docking protocol to generate high-quality models of protein-ligand complexes. By combining the use of highly methyl-labeled protein with experimentally determined intermolecular distances, a comprehensive set of protein-ligand distances is generated which then drives the docking process and enables the determination of the correct ligand conformation in the bound state. For the first time, the utility and performance of such a method is fully demonstrated by employing the generated models for the successful, prospective optimization of crystallographically intractable fragment hits into more potent binders.


Assuntos
Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Proteínas/química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Proteínas/metabolismo
7.
J Biomol NMR ; 65(1): 15-27, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27130242

RESUMO

The deuteration of proteins and selective labeling of side chain methyl groups has greatly enhanced the molecular weight range of proteins and protein complexes which can be studied using solution NMR spectroscopy. Protocols for the selective labeling of all six methyl group containing amino acids individually are available, however to date, only a maximum of five amino acids have been labeled simultaneously. Here, we describe a new methodology for the simultaneous, selective labeling of all six methyl containing amino acids using the 115 kDa homohexameric enzyme CoaD from E. coli as a model system. The utility of the labeling protocol is demonstrated by efficiently and unambiguously assigning all methyl groups in the enzymatic active site using a single 4D (13)C-resolved HMQC-NOESY-HMQC experiment, in conjunction with a crystal structure. Furthermore, the six fold labeled protein was employed to characterize the interaction between the substrate analogue (R)-pantetheine and CoaD by chemical shift perturbations, demonstrating the benefit of the increased probe density.


Assuntos
Aminoácidos/química , Ressonância Magnética Nuclear Biomolecular , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Nucleotidiltransferases/química , Coloração e Rotulagem
8.
J Control Release ; 361: 694-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567507

RESUMO

Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking. Here we describe the systematic and quantitative characterisation of passive EV loading with small molecules based on hydrophobic interactions - either through direct adsorption of hydrophobic compounds, or by membrane anchoring of hydrophilic ligands via cholesterol tags. As revealed by single vesicle imaging, both ligand types bind to CD63 positive EVs (exosomes), however also non-specifically to other vesicles, particles, and serum proteins. The hydrophobic compounds Curcumin and Terbinafine aggregate on EVs with no apparent saturation up to 106-107 molecules per vesicle as quantified by liquid chromatography - high resolution mass spectrometry (LC-HRMS). For both compounds, high density EV loading resulted in the formation of a population of large, electron-dense vesicles as detected by quantitative cryo-transmission electron microscopy (TEM), a reduced EV cell uptake and a toxic gain of function for Curcumin-EVs. In contrast, cholesterol tagging of a hydrophilic mdm2-targeted cyclic peptide saturated at densities of ca 104-105 molecules per vesicle, with lipidomics showing addition to, rather than replacement of endogenous cholesterol. Cholesterol anchored ligands did not change the EVs' size or morphology, and such EVs retained their cell uptake activity without inducing cell toxicity. However, the cholesterol-anchored ligands were rapidly shed from the vesicles in presence of serum. Based on these data, we conclude that (1) both methods allow loading of EVs with small molecules but are prone to unspecific compound binding or redistribution to other components if present in the sample, (2) cholesterol anchoring needs substantial optimization of formulation stability for in vivo applications, whereas (3) careful titration of loading densities is warranted when relying on hydrophobic interactions of EVs with hydrophobic compounds to mitigate changes in physicochemical properties, loss of EV function and potential cell toxicity.


Assuntos
Curcumina , Vesículas Extracelulares , Ligantes , Vesículas Extracelulares/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Colesterol/metabolismo
9.
Nat Commun ; 14(1): 5497, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679328

RESUMO

Human interleukin-1ß (hIL-1ß) is a pro-inflammatory cytokine involved in many diseases. While hIL-1ß directed antibodies have shown clinical benefit, an orally available low-molecular weight antagonist is still elusive, limiting the applications of hIL-1ß-directed therapies. Here we describe the discovery of a low-molecular weight hIL-1ß antagonist that blocks the interaction with the IL-1R1 receptor. Starting from a low affinity fragment-based screening hit 1, structure-based optimization resulted in a compound (S)-2 that binds and antagonizes hIL-1ß with single-digit micromolar activity in biophysical, biochemical, and cellular assays. X-ray analysis reveals an allosteric mode of action that involves a hitherto unknown binding site in hIL-1ß encompassing two loops involved in hIL-1R1/hIL-1ß interactions. We show that residues of this binding site are part of a conformationally excited state of the mature cytokine. The compound antagonizes hIL-1ß function in cells, including primary human fibroblasts, demonstrating the relevance of this discovery for future development of hIL-1ß directed therapeutics.


Assuntos
Citocinas , Magreza , Humanos , Interleucina-1beta , Peso Molecular , Sítios de Ligação , Biofísica
10.
J Mol Biol ; 434(22): 167833, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36174765

RESUMO

The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using NMR spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteínas Intrinsicamente Desordenadas , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-myc , Caseína Quinase II/química , DNA/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Proto-Oncogênicas c-myc/química , Serina/química , Mapeamento de Interação de Proteínas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Ligação Proteica , Fosforilação
11.
ChemMedChem ; 17(13): e202200163, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35475323

RESUMO

Ligand-based 19 F NMR screening is a highly effective and well-established hit-finding approach. The high sensitivity to protein binding makes it particularly suitable for fragment screening. Different criteria can be considered for generating fluorinated fragment libraries. One common strategy is to assemble a large, diverse, well-designed and characterized fragment library which is screened in mixtures, generated based on experimental 19 F NMR chemical shifts. Here, we introduce a complementary knowledge-based 19 F NMR screening approach, named 19 Focused screening, enabling the efficient screening of putative active molecules selected by computational hit finding methodologies, in mixtures assembled and on-the-fly deconvoluted based on predicted 19 F NMR chemical shifts. In this study, we developed a novel approach, named LEFshift, for 19 F NMR chemical shift prediction using rooted topological fluorine torsion fingerprints in combination with a random forest machine learning method. A demonstration of this approach to a real test case is reported.


Assuntos
Flúor , Imageamento por Ressonância Magnética , Flúor/química , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica
12.
J Med Chem ; 65(24): 16173-16203, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36399068

RESUMO

Rapid emergence of tumor resistance via RAS pathway reactivation has been reported from clinical studies of covalent KRASG12C inhibitors. Thus, inhibitors with broad potential for combination treatment and distinct binding modes to overcome resistance mutations may prove beneficial. JDQ443 is an investigational covalent KRASG12C inhibitor derived from structure-based drug design followed by extensive optimization of two dissimilar prototypes. JDQ443 is a stable atropisomer containing a unique 5-methylpyrazole core and a spiro-azetidine linker designed to position the electrophilic acrylamide for optimal engagement with KRASG12C C12. A substituted indazole at pyrazole position 3 results in novel interactions with the binding pocket that do not involve residue H95. JDQ443 showed PK/PD activity in vivo and dose-dependent antitumor activity in mouse xenograft models. JDQ443 is now in clinical development, with encouraging early phase data reported from an ongoing Phase Ib/II clinical trial (NCT04699188).


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Desenho de Fármacos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico
13.
J Med Chem ; 65(7): 5317-5333, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35352560

RESUMO

Polycomb Repressive Complex 2 (PRC2) plays an important role in transcriptional regulation during animal development and in cell differentiation, and alteration of PRC2 activity has been associated with cancer. On a molecular level, PRC2 catalyzes methylation of histone H3 lysine 27 (H3K27), resulting in mono-, di-, or trimethylated forms of H3K27, of which the trimethylated form H3K27me3 leads to transcriptional repression of polycomb target genes. Previously, we have shown that binding of the low-molecular-weight compound EED226 to the H3K27me3 binding pocket of the regulatory subunit EED can effectively inhibit PRC2 activity in cells and reduce tumor growth in mouse xenograft models. Here, we report the stepwise optimization of the tool compound EED226 toward the potent and selective EED inhibitor MAK683 (compound 22) and its subsequent preclinical characterization. Based on a balanced PK/PD profile, efficacy, and mitigated risk of forming reactive metabolites, MAK683 has been selected for clinical development.


Assuntos
Histonas , Neoplasias , Animais , Inibidores Enzimáticos , Histonas/metabolismo , Humanos , Metilação , Camundongos , Neoplasias/tratamento farmacológico , Complexo Repressor Polycomb 2
14.
J Biol Chem ; 285(34): 26570-80, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20504762

RESUMO

Proper hedgehog (Hh) signaling is crucial for embryogenesis and tissue regeneration. Dysregulation of this pathway is associated with several types of cancer. The monoclonal antibody 5E1 is a Hh pathway inhibitor that has been extensively used to elucidate vertebrate Hh biology due to its ability to block binding of the three mammalian Hh homologs to the receptor, Patched1 (Ptc1). Here, we engineered a murine:human chimeric 5E1 (ch5E1) with similar Hh-binding properties to the original murine antibody. Using biochemical, biophysical, and x-ray crystallographic studies, we show that, like the regulatory receptors Cdon and Hedgehog-interacting protein (Hhip), ch5E1 binding to Sonic hedgehog (Shh) is enhanced by calcium ions. In the presence of calcium and zinc ions, the ch5E1 binding affinity increases 10-20-fold to tighter than 1 nm primarily because of a decrease in the dissociation rate. The co-crystal structure of Shh bound to the Fab fragment of ch5E1 reveals that 5E1 binds at the pseudo-active site groove of Shh with an epitope that largely overlaps with the binding site of its natural receptor antagonist Hhip. Unlike Hhip, the side chains of 5E1 do not directly coordinate the Zn(2+) cation in the pseudo-active site, despite the modest zinc-dependent increase in 5E1 affinity for Shh. Furthermore, to our knowledge, the ch5E1 Fab-Shh complex represents the first structure of an inhibitor antibody bound to a metalloprotease fold.


Assuntos
Anticorpos Monoclonais/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Cálcio/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Epitopos , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Ligação Proteica , Engenharia de Proteínas
15.
Proteins ; 79 Suppl 10: 6-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22020785

RESUMO

One goal of the CASP community wide experiment on the critical assessment of techniques for protein structure prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, that is, the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this article, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fiber protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iß dimerization/docking domain, the ectodomain of the JTB (jumping translocation breakpoint) transmembrane receptor, Autotaxin in complex with an inhibitor, the DNA-binding J-binding protein 1 domain essential for biosynthesis and maintenance of DNA base-J (ß-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the phycobilisome core-membrane linker phycobiliprotein ApcE from Synechocystis, the heat shock protein 90 activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química , Sequência de Aminoácidos , Animais , Bacteriófago T4/química , Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas de Ligação a DNA/química , Humanos , Klebsiella pneumoniae/química , Klebsiella pneumoniae/enzimologia , Leishmania/química , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Plasmodium falciparum/química , Conformação Proteica , Dobramento de Proteína , Proteínas de Protozoários/química , Trypanosoma/química , Proteínas Virais/química
16.
RNA ; 14(10): 1991-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18755833

RESUMO

The removal of the 5' cap structure by the DCP1-DCP2 decapping complex irreversibly commits eukaryotic mRNAs to degradation. In human cells, the interaction between DCP1 and DCP2 is bridged by the Ge-1 protein. Ge-1 contains an N-terminal WD40-repeat domain connected by a low-complexity region to a conserved C-terminal domain. It was reported that the C-terminal domain interacts with DCP2 and mediates Ge-1 oligomerization and P-body localization. To understand the molecular basis for these functions, we determined the three-dimensional crystal structure of the most conserved region of the Drosophila melanogaster Ge-1 C-terminal domain. The region adopts an all alpha-helical fold related to ARM- and HEAT-repeat proteins. Using structure-based mutants we identified an invariant surface residue affecting P-body localization. The conservation of critical surface and structural residues suggests that the C-terminal region adopts a similar fold with conserved functions in all members of the Ge-1 protein family.


Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster/enzimologia , Proteínas/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Cristalização , Cristalografia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo
17.
Nature ; 426(6965): 465-9, 2003 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-14615801

RESUMO

RNA interference is a conserved mechanism that regulates gene expression in response to the presence of double-stranded (ds)RNAs. The RNase III-like enzyme Dicer first cleaves dsRNA into 21-23-nucleotide small interfering RNAs (siRNAs). In the effector step, the multimeric RNA-induced silencing complex (RISC) identifies messenger RNAs homologous to the siRNAs and promotes their degradation. The Argonaute 2 protein (Ago2) is a critical component of RISC. Both Argonaute and Dicer family proteins contain a common PAZ domain whose function is unknown. Here we present the three-dimensional nuclear magnetic resonance structure of the Drosophila melanogaster Ago2 PAZ domain. This domain adopts a nucleic-acid-binding fold that is stabilized by conserved hydrophobic residues. The nucleic-acid-binding patch is located in a cleft between the surface of a central beta-barrel and a conserved module comprising strands beta3, beta4 and helix alpha3. Because critical structural residues and the binding surface are conserved, we suggest that PAZ domains in all members of the Argonaute and Dicer families adopt a similar fold with nucleic-acid binding function, and that this plays an important part in gene silencing.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Ácidos Nucleicos/metabolismo , Complexo de Inativação Induzido por RNA/química , Complexo de Inativação Induzido por RNA/metabolismo , Animais , Proteínas Argonautas , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Relação Estrutura-Atividade
18.
Biochemistry ; 48(29): 6783-93, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19530738

RESUMO

The chromosomal passenger complex (CPC) has been identified as a master regulator of mitosis. In particular, proper chromosome segregation and cytokinesis depend on the correct localization and function of the CPC. Within the complex, the kinase Aurora B associates with Incenp, Survivin, and Borealin. The stoichiometry of the complex as well as a complete understanding of how these four components interact with each other remains to be elucidated. Here, we identify a new domain of Borealin. We determined its structure using NMR spectroscopy and discovered a novel dimerization motif. Interestingly, we found that substitutions at Borealin T230, recently identified as an Mps1 phosphorylation site, can modulate the dimerization state of Borealin. Mutation of this single residue to alanine or valine impairs Aurora B activity during mitosis and causes chromosome segregation defects. This study reveals that Mps1 regulates the CPC through a novel Borealin domain.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Dimerização , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
19.
Nat Struct Mol Biol ; 11(6): 576-7, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15156196

RESUMO

We describe the solution structures of the Argonaute2 PAZ domain bound to RNA and DNA oligonucleotides. The structures reveal a unique mode of single-stranded nucleic acid binding in which the two 3'-terminal nucleotides are buried in a hydrophobic cleft. We propose that the PAZ domain contributes to the specific recognition of siRNAs by providing a binding pocket for their characteristic two-nucleotide 3' overhangs.


Assuntos
Proteínas de Drosophila/química , Ácidos Nucleicos/metabolismo , Complexo de Inativação Induzido por RNA/química , Proteínas Argonautas , Sítios de Ligação , Proteínas de Drosophila/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Soluções
20.
Methods Enzymol ; 614: 1-36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30611421

RESUMO

Escherichia coli expression protocols for selective labeling of methyl groups in proteins have been essential in expanding the size range of targets that can be studied by biomolecular NMR. Based on the initial work achieving selective labeling of isoleucine, leucine, and valine residues, additional methods were developed over the past years which enabled the individual and/or simultaneous combinatorial labeling of all methyl containing amino acids. Together with the introduction of new methyl-optimized NMR experiments, this now allows the detailed characterization of protein-ligand interactions as well as mechanistic and dynamic processes of protein-protein complexes up to 1MDa in size. In this chapter, we provide a general introduction to selective labeling of proteins using E. coli-based expression systems, describe the considerations taken into account prior to the selective labeling of a protein, and include the protocols used to produce such proteins. An overview of applications using selectively labeled proteins with an emphasis on examples relevant to the drug discovery process is then presented.


Assuntos
Proteínas de Escherichia coli/química , Marcação por Isótopo/métodos , Leucina/química , Espectroscopia de Ressonância Magnética/métodos , Coloração e Rotulagem/métodos , Valina/química , Descoberta de Drogas , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Humanos , Leucina/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética/instrumentação , Metilação , Simulação de Dinâmica Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA