Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Chem Front ; 6(20): 2994-3005, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36324610

RESUMO

Photochromic dyes possess unique properties that can be exploited in different domains, including optics, biomedicine and optoelectronics. Herein, we explore the potential of photochromic spiro-indoline naphthoxazine (SINO) and naphthopyran (NIPS) for application in photovoltaics. We designed and synthesized four new photosensitizers with a donor-pi-acceptor structure embedding SINO and NIPS units as photochromic cores. Their optical, photochromic and acidochromic properties were thoroughly studied to establish structure-properties relationships. Then, after unravelling the possible forms adopted depending on the stimuli, their photovoltaic properties were evaluated in DSSCs. Although the photochromic behavior is not always preserved, we elucidate the interplay between photochromic, acidochromic and photovoltaic properties and we demonstrate that these dyes can act as photosensitizers in DSSCs. We report a maximum power conversion efficiency of 2.7% with a NIPS-based dye, a tenfold improvement in comparison to previous works on similar class of compounds. This work opens new perspectives of developments for SINO and NIPS in optical and photovoltaic devices, and it provides novel research directions to design photochromic materials with improved characteristics.

2.
Sol RRL ; 6(8): 2100929, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35966398

RESUMO

We recently demonstrated that diaryl-naphthopyran photochromic dyes are efficient for sensitization of TiO2 mesoporous electrodes, thus allowing the fabrication of photo-chromo-voltaic cells that can self-adapt their absorption of light and their generation of electricity with the light intensity. Herein we report the synthesis, the characterisation of two novel photochromic dyes based on diaryl-naphthopyran core i.e NPI-ThPh and NPI-FuPh for use in Dye Sensitized Solar Cells (DSSCs). Compared to our reference dye NPI, the molecules only vary by the nature of the spacer, a thiophene or a furan, connecting the photochromic unit and the phenyl-cyano-acrylic acid moiety used as the anchoring function. We found that swapping a phenyl for a thiophene or a furan leads to an improvement of the absorption properties of the molecules both in solution and after grafting on TiO2 electrodes, however their photochromic process becomes not fully reversible. Despite better absorption in the visible range, the new dyes show poorer photochromic and photovoltaic properties in devices compared to NPI. Thanks to UV-Vis spectroscopy, DFT calculation, electrical characterization of the cells, and impedance spectroscopy, we unravel the factors limiting their performances. Our study contributes to better understand the connection between photochromic and photovoltaic properties, which is key to develop better performing molecules of this class.

3.
ACS Appl Energy Mater ; 4(9): 8941-8952, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34622143

RESUMO

Photochromic dye-sensitized solar cells (DSSCs) are novel semi-transparent photovoltaic devices that self-adjust their optical properties to the irradiation conditions, a feature that makes them especially suitable for building integrated photovoltaics. These novel solar cells have already achieved efficiencies above 4%, and there are multiple pathways to improve the performance. In this work, we conduct a full characterization of DSSCs with the photochromic dye NPI, combining electrical impedance spectroscopy (EIS) and intensity-modulated photocurrent spectroscopy (IMPS). We argue that the inherent properties of the photochromic dye, which result in a modification of the functioning of the solar cell by the optical excitation that also acts as a probe, pose unique challenges to the interpretation of the results using conventional models. Absorption of light in the visible range significantly increases when the NPI dye is in the activated state; however, the recombination rate also increases, thus limiting the efficiency. We identify and quantify the mechanism of enhanced recombination when the photochromic dye is activated using a combination of EIS and IMPS. From the comparison to a state-of-the-art reference dye (RK1), we were able to detect a new feature in the IMPS spectrum that is associated with the optical activation of the photochromic dye, providing a useful tool for assessing the electronic behavior of the device under different conditions of light excitation. This study provides guidelines to adequate characterization protocols of photochromic solar cells and essential insights on the interfacial electronic processes.

4.
Nat Energy ; 5(6): 468-477, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35475116

RESUMO

Semi-transparent photovoltaics only allows for the fabrication of solar cells with an optical transmission that is fixed during their manufacturing resulting in a trade-off between transparency and efficiency. For the integration of semi-transparent devices in building, ideally solar cells should generate electricity while offering the comfort for users to self-adjust their light transmission with the intensity of the daylight. Here we report a photochromic dye-sensitized solar cell (DSSC) based on donor-π-conjugated bridge-acceptor structures where the π-conjugated bridge is substituted for a diphenyl-naphthopyran photochromic unit. DSSCs show change in colour and self-adjustable light transmittance when irradiated with visible light and a power conversion efficiency up to 4.17%. The colouration-decolouration process is reversible and these DSSCs are stable over 50 days. We also report semi-transparent photo-chromo-voltaic mini-modules (23 cm2) exhibiting a maximum power output of 32.5 mW after colouration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA