Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(3): 827-837, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30487288

RESUMO

Type I interferons (IFNs) induce expression of multiple genes that control innate immune responses to invoke both antiviral and antineoplastic activities. Transcription of these interferon-stimulated genes (ISGs) occurs upon activation of the canonical Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathways. Phosphorylation and acetylation are both events crucial to tightly regulate expression of ISGs. Here, using mouse embryonic fibroblasts and an array of biochemical methods including immunoblotting and kinase assays, we show that sirtuin 2 (SIRT2), a member of the NAD-dependent protein deacetylase family, is involved in type I IFN signaling. We found that SIRT2 deacetylates cyclin-dependent kinase 9 (CDK9) in a type I IFN-dependent manner and that the CDK9 deacetylation is essential for STAT1 phosphorylation at Ser-727. We also found that SIRT2 is subsequently required for the transcription of ISGs and for IFN-driven antiproliferative responses in both normal and malignant cells. These findings establish the existence of a previously unreported signaling pathway whose function is essential for the control of JAK-STAT signaling and the regulation of IFN responses. Our findings suggest that targeting sirtuin activities may offer an avenue in the development of therapies for managing immune-related diseases and cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Interferon Tipo I/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Sirtuína 2/metabolismo , Acetilação , Animais , Quinase 9 Dependente de Ciclina/genética , Humanos , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT1/genética , Sirtuína 2/genética , Transcrição Gênica , Células U937
2.
EMBO Rep ; 19(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29661859

RESUMO

The maintenance of cellular identity requires continuous adaptation to environmental changes. This process is particularly critical for stem cells, which need to preserve their differentiation potential over time. Among the mechanisms responsible for regulating cellular homeostatic responses, mitochondria are emerging as key players. Given their dynamic and multifaceted role in energy metabolism, redox, and calcium balance, as well as cell death, mitochondria appear at the interface between environmental cues and the control of epigenetic identity. In this review, we describe how mitochondria have been implicated in the processes of acquisition and loss of stemness, with a specific focus on pluripotency. Dissecting the biological functions of mitochondria in stem cell homeostasis and differentiation will provide essential knowledge to understand the dynamics of cell fate modulation, and to establish improved stem cell-based medical applications.


Assuntos
Homeostase , Mitocôndrias/fisiologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Metabolismo Energético , Humanos , Oxirredução
3.
Stem Cells ; 35(7): 1655-1662, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28544378

RESUMO

High attrition rates and loss of capital plague the drug discovery process. This is particularly evident for mitochondrial disease that typically involves neurological manifestations and is caused by nuclear or mitochondrial DNA defects. This group of heterogeneous disorders is difficult to target because of the variability of the symptoms among individual patients and the lack of viable modeling systems. The use of induced pluripotent stem cells (iPSCs) might significantly improve the search for effective therapies for mitochondrial disease. iPSCs can be used to generate patient-specific neural cell models in which innovative compounds can be identified or validated. Here we discuss the promises and challenges of iPSC-based drug discovery for mitochondrial disease with a specific focus on neurological conditions. We anticipate that a proper use of the potent iPSC technology will provide critical support for the development of innovative therapies against these untreatable and detrimental disorders. Stem Cells 2017;35:1655-1662.


Assuntos
Descoberta de Drogas/métodos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Diferenciação Celular , DNA Mitocondrial/genética , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/agonistas , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Medicina de Precisão
4.
Methods ; 121-122: 29-44, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28522326

RESUMO

Human induced pluripotent stem cells (hiPSCs) represent an ideal in vitro platform to study human genetics and biology. The recent advent of programmable nucleases makes also the human genome amenable to experimental genetics through either the correction of mutations in patient-derived iPSC lines or the de novo introduction of mutations into otherwise healthy iPSCs. The production of specific and sometimes complex genotypes in multiple cell lines requires efficient and streamlined gene editing technologies. In this article we provide protocols for gene editing in hiPSCs. We presently achieve high rates of gene editing at up to three loci using a modified iCRISPR system. This system includes a doxycycline inducible Cas9 and sgRNA/reporter plasmids for the enrichment of transfected cells by fluorescence-activated cell sorting (FACS). Here we cover the selection of target sites, vector construction, transfection, and isolation and genotyping of modified hiPSC clones.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , RNA Guia de Cinetoplastídeos/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Linhagem Celular , Células Clonais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , DNA/metabolismo , Doxiciclina/farmacologia , Eletroporação/métodos , Endonucleases/metabolismo , Citometria de Fluxo , Marcação de Genes/métodos , Genes Reporter , Genoma Humano , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipídeos/química , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo
5.
Appl Microbiol Biotechnol ; 102(11): 4629-4640, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29626235

RESUMO

The CRISPR/Cas9 system, a natural defence system of bacterial organisms, has recently been used to modify genomes of the most important protozoa parasites. Successful genome manipulations with the CRISPR/Cas9 system are changing the present view of genetics in parasitology. The application of this system offers a major chance to overcome the current restriction in culturing, maintaining and analysing protozoan parasites, and allows dynamic analysis of parasite genes functions, leading to a better understanding of pathogenesis. CRISPR/Cas9 system will have a significant influence on the process of developing novel drugs and treatment strategies against protozoa parasites.


Assuntos
Sistemas CRISPR-Cas , Eucariotos/fisiologia , Parasitos/fisiologia , Animais , Eucariotos/genética , Genoma de Protozoário/genética , Parasitos/genética
6.
Neurobiol Dis ; 99: 84-120, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27890672

RESUMO

The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches.


Assuntos
Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Epigênese Genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/fisiopatologia , Animais , Epigenômica , Humanos , Células-Tronco Pluripotentes/fisiologia
7.
BMC Vet Res ; 13(1): 161, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587645

RESUMO

BACKGROUND: Genome-wide gene expression profiling allows for identification of genes involved in the defense response of the host against pathogens. As presented here, transcriptomic analysis and bioinformatics tools were applied in order to identify genes expressed in the mammary gland parenchyma of cows naturally infected with coagulase-positive and coagulase-negative Staphylococci. RESULTS: In cows infected with coagulase-positive Staphylococci, being in 1st or 2nd lactation, 1700 differentially expressed genes (DEGs) were identified. However, examination of the 3rd or 4th lactations revealed 2200 DEGs. Gene ontology functional classification showed the molecular functions of the DEGs overrepresented the activity of cytokines, chemokines, and their receptors. In cows infected with coagulase-negative Staphylococci, in the 1st or 2nd lactations 418 DEGs, while in the 3rd or 4th lactations, 1200 DEGs were identified that involved in molecular functions such as protein, calcium ion and lipid binding, chemokine activity, and protein homodimerization. Gene network analysis showed DEGs associated with inflammation, cell migration, and immune response to infection, development of cells and tissues, and humoral responses to infections caused by both types of Staphylococci. CONCLUSION: A coagulase-positive Staphylococci infection caused a markedly stronger host response than that of coagulase-negative, resulting in vastly increased DEGs. A significant increase in the expression of the FOS, TNF, and genes encoding the major histocompatibility complex proteins (MHC) was observed. It suggests these genes play a key role in the synchronization of the immune response of the cow's parenchyma against mastitis-causing bacteria. Moreover, the following genes that belong to several physiological pathways (KEGG pathways) were selected for further studies as candidate genes of mammary gland immune response for use in Marker Assisted Selection (MAS): chemokine signaling pathway (CCL2, CXCL5, HCK, CCR1), cell adhesion molecules (CAMs) pathway (BOLA-DQA2, BOLA-DQA1, F11R, ITGAL, CD86), antigen processing and presentation pathway (CD8A, PDIA3, LGMN, IFI30, HSPA1A), and NOD-like receptor signaling pathway (TNF, IL8, IL18, NFKBIA).


Assuntos
Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , Tecido Parenquimatoso/microbiologia , Infecções Estafilocócicas/genética , Animais , Bovinos , Coagulase/metabolismo , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/veterinária , Mastite Bovina/genética , Família Multigênica , Tecido Parenquimatoso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Staphylococcus/enzimologia
8.
BMC Neurosci ; 15: 130, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25472829

RESUMO

BACKGROUND: In order to better understand the effects of social stress on the prefrontal cortex, we investigated gene expression in mice subjected to acute and repeated social encounters of different duration using microarrays. RESULTS: The most important finding was identification of hemoglobin genes (Hbb-b1, Hbb-b2, Hba-a1, Hba-a2, Beta-S) as potential markers of chronic social stress in mice. Expression of these genes was progressively increased in animals subjected to 8 and 13 days of repeated stress and was correlated with altered expression of Mgp (Mglap), Fbln1, 1500015O10Rik (Ecrg4), SLC16A10, and Mndal. Chronic stress increased also expression of Timp1 and Ppbp that are involved in reaction to vascular injury. Acute stress did not affect expression of hemoglobin genes but it altered expression of Fam107a (Drr1) and Agxt2l1 (Etnppl) that have been implicated in psychiatric diseases. CONCLUSIONS: The observed up-regulation of genes associated with vascular system and brain injury suggests that stressful social encounters may affect brain function through the stress-induced dysfunction of the vascular system.


Assuntos
Hemoglobinas/metabolismo , Córtex Pré-Frontal/metabolismo , Percepção Social , Estresse Psicológico/metabolismo , Doença Aguda , Animais , Peso Corporal , Cromatografia Líquida de Alta Pressão , Doença Crônica , Corticosterona/sangue , Modelos Animais de Doenças , Ingestão de Alimentos , Expressão Gênica , Masculino , Camundongos , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real
9.
BMC Vet Res ; 10: 246, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25286984

RESUMO

BACKGROUND: Mastitis is still considered to be the most economically important infectious disease in dairy cattle breeding. The immune response in mammary gland tissues could help in developing support strategies to combat this disease. The role of neutrophils and macrophages in the innate response of mammary gland is well known. However, the immune response in mammary gland tissues, including levels of antimicrobial peptide transcripts, has not been well recognized. Moreover, most studies are conducted in vitro, on cell cultures, or on artificially infected animals, with analysis being done within a several dozen hours after infection.The aim of the study was to examine the in vivo transcript levels of beta-defensin and cathelicidins genes in cow mammary gland secretory tissue (parenchyma) with the chronic, recurrent and incurable mammary gland inflammation induced by coagulase-positive or coagulase-negative Staphyloccoci vs. bacteria-free tissue. RESULTS: The mRNA of DEFB1, BNBD4, BNBD5, BNBD10 and LAP genes, but not of TAP gene, were detected in all investigated samples regardless of the animals' age and microbiological status of the mammary gland, but at different levels. The expression of most of the beta-defensin genes was shown to be much higher in tissues derived from udders infected with bacteria (CoPS or CoNS) than from bacteria-free udders, regardless of parity. Cathelicidins (CATH4, CATH5 and CATH6) showed expression patterns contrasting those of ß-defensins, with the highest expression in tissues derived from bacteria-free udders. CONCLUSION: Increased expression of genes encoding ß-defensins in the infected udder confirms their crucial role in the defense of the cow mammary gland against mastitis. On the other hand, the elevated cathelicidin transcripts in non-infected tissues indicate their role in the maintenance of healthy mammary tissues. The expression levels of investigated genes are likely to depend on the duration of the infection and type of bacteria.


Assuntos
Catelicidinas/metabolismo , Coagulase/metabolismo , Regulação da Expressão Gênica/imunologia , Glândulas Mamárias Animais/metabolismo , Staphylococcus/enzimologia , beta-Defensinas/metabolismo , Animais , Catelicidinas/genética , Bovinos , Coagulase/genética , Feminino , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , beta-Defensinas/genética
10.
Anim Genet ; 45(2): 288-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24304134

RESUMO

This study examined liver transcriptomic profiles of cattle distinctly different in meat and milk production capacity. It was performed on bulls of two different genetic backgrounds: Herefords (H), a meat breed, and Holstein-Friesians (HF), a dairy breed. Using bovine long oligo-microarrays and qPCR, we identified 128 genes that are differentially expressed between the two breeds. In H bulls, we observed up-regulation of genes involved in fatty acid biosynthesis and lipid metabolism (CD36, CAT, HSD3B1, FABP1, ACAA1) and involved in insulin signaling (INSR, INSIG2, NR4A1) and down-regulation of genes involved in somatotropic axis signaling (IGF1, GHR, IGFBP3) as compared to HF. Transcriptome profiling of these two breeds allowed us to pinpoint the transcriptional differences between Holstein and Hereford bulls at hepatic level associated with changes in metabolism and postnatal growth.


Assuntos
Bovinos/genética , Fígado/metabolismo , Transcriptoma , Animais , Bovinos/crescimento & desenvolvimento , Bovinos/metabolismo , Perfilação da Expressão Gênica , Masculino , RNA Mensageiro/metabolismo
11.
Front Neurosci ; 18: 1426177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903604

RESUMO

Recently a broad range of phenotypic abnormalities related to the neurodevelopmental and neurodegenerative disorder NEDAMSS (Neurodevelopmental Disorder with Regression, Abnormal Movements, Loss of Speech, and Seizures) have been associated with rare single-nucleotide polymorphisms (SNPs) or insertion and deletion variants (Indel) in the intron-less gene IRF2BPL. Up to now, 34 patients have been identified through whole exome sequencing carrying different heterozygous pathogenic variants spanning the intron-less gene from the first polyglutamine tract at the N-terminus to the C3HC4 RING domain of the C-terminus of the protein. As a result, the phenotypic spectrum of the patients is highly heterogeneous and ranges from abnormal neurocognitive development to severe neurodegenerative courses with developmental and seizure-related encephalopathies. While the treatment of IRF2BPL-related disorders has focused on alleviating the patient's symptoms by symptomatic multidisciplinary management, there has been no prospect of entirely relieving the symptoms of the individual patients. Yet, the recent advancement of CRISPR-Cas9-derived gene editing tools, leading to the generation of base editors (BEs) and prime editors (PEs), provide an encouraging new therapeutic avenue for treating NEDAMSS and other neurodevelopmental and neurodegenerative diseases, which contain SNPs or smaller Indels in post-mitotic cell populations of the central nervous system, due to its ability to generate site-specific DNA sequence modifications without creating double-stranded breaks, and recruiting the non-homologous DNA end joining repair mechanism.

12.
BMC Neurosci ; 14: 144, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24225037

RESUMO

BACKGROUND: The effects of chronic treatment with tricyclic antidepressant (desipramine, DMI) on the hippocampal transcriptome in mice displaying high and low swim stress-induced analgesia (HA and LA lines) were studied. These mice displayed different depression-like behavioral responses to DMI: stress-sensitive HA animals responded to DMI, while LA animals did not. RESULTS: To investigate the effects of DMI treatment on gene expression profiling, whole-genome Illumina Expression BeadChip arrays and qPCR were used. Total RNA isolated from hippocampi was used. Expression profiling was then performed and data were analyzed bioinformatically to assess the influence of stress susceptibility-specific phenotypes on hippocampal transcriptomic responses to chronic DMI. DMI treatment affected the expression of 71 genes in HA mice and 41 genes in LA mice. We observed the upregulation of Igf2 and the genes involved in neurogenesis (HA: Sema3f, Ntng1, Gbx2, Efna5, and Rora; LA: Otx2, Rarb, and Drd1a) in both mouse lines. In HA mice, we observed the upregulation of genes involved in neurotransmitter transport, the termination of GABA and glycine activity (Slc6a11, Slc6a9), glutamate uptake (Slc17a6), and the downregulation of neuropeptide Y (Npy) and corticotropin releasing hormone-binding protein (Crhbp). In LA mice, we also observed the upregulation of other genes involved in neuroprotection (Ttr, Igfbp2, Prlr) and the downregulation of genes involved in calcium signaling and ion binding (Adcy1, Cckbr, Myl4, Slu7, Scrp1, Zfp330). CONCLUSIONS: Several antidepressant treatment responses are similar in individuals with different sensitivities to stress, including the upregulation of Igf2 and the genes involved in neurogenesis. However, the findings also reveal that many responses to antidepressant treatments, involving the action of individual genes engaged in neurogenesis, neurotransmitter transport and neuroprotection, depend on constitutive hippocampal transcriptomic profiles and might be genotype dependent. The results suggest that, when and if this becomes feasible, antidepressant treatment should take into consideration individual sensitivity to stress.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Hipocampo/efeitos dos fármacos , Estresse Psicológico/genética , Transcriptoma/efeitos dos fármacos , Animais , Desipramina/farmacologia , Hipocampo/fisiologia , Hibridização In Situ , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real
13.
Stem Cell Res ; 68: 103056, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863131

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal length of CAG repeats in the gene HTT, leading to an elongated poly-glutamine (poly-Q) sequence in huntingtin (HTT). We used non-integrative Sendai virus to reprogram fibroblasts from a patient with juvenile onset HD to induced pluripotent stem cells (iPSCs). Reprogrammed iPSCs expressed pluripotency-associated markers, exhibited a normal karyotype, and following directed differentiation generated cell types belonging to the three germ layers. PCR analysis and sequencing confirmed the HD patient-derived iPSC line had one normal HTT allele and one with elongated CAG repeats, equivalent to ≥180Q.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Peptídeos/metabolismo , Linhagem Celular , Proteína Huntingtina/genética
14.
Adv Med Sci ; 68(1): 111-120, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36917892

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disease caused by defects in the CF transmembrane conductance regulator (CFTR) protein. Due to the genetic nature of the disease, interventions in the genome can target any underlying alterations and potentially provide permanent disease resolution. The current development of gene-editing tools, such as designer nuclease technology capable of genome correction, holds great promise for both CF and other genetic diseases. In recent years, Cas9-based technologies have enabled the generation of genetically defined human stem cell and disease models based on induced pluripotent stem cells (iPSC). In this article, we outline the potential and possibilities of using CRISPR/Cas9-based gene-editing technology in CF modeling.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Fibrose Cística/terapia , Edição de Genes , Tecnologia
15.
Mol Biol Rep ; 39(12): 10957-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23065264

RESUMO

Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.


Assuntos
Catelicidinas/metabolismo , Sequência de Aminoácidos , Animais , Catelicidinas/química , Catelicidinas/genética , Catelicidinas/farmacologia , Variação Genética , Humanos , Dados de Sequência Molecular
16.
Children (Basel) ; 9(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35740818

RESUMO

We evaluated the effectiveness of a 15-week intervention that increased from three to five lessons of physical education (PE) a week on 7-year-old boys' and girls' physical fitness (PF), physical activity (PA) and sedentary behaviour on week and weekend days. A total of 212 first grade pupils (mean age 6.95 ± 0.43) from two urban schools in Poznan were randomly assigned to the experimental or control groups. The PF was measured with a battery of field tests, while health-related behaviours were assessed with the Healthy Children in Sound Communities questionnaire. There were some interaction effects noticed in the PF scores in the case of a 20-min run for boys (F2,196 = 5.29, p = 0.0058) and for girls (F2,220 = 3.31, p = 0.0382) and the sit-ups test for boys (F2,196 = 1.93, p = 0.1478) and for girls (F2,220 = 3.98, p = 0.0201) and for the sit and reach test in the case of girls (F2,220 = 3.98, p = 0.0201). In terms of outdoor PA levels, there were no major differences between any of the examined groups. Differences were found between girls from the experimental and control groups in the post-test (p = 0.0107) and follow-up (p = 0.0390) during the weekdays, with no differences between the groups of boys. Despite the moderate effects of the extended PE time programme right after the intervention, there were some indications of progress in the follow-up experiments.

17.
Reprod Biol ; 22(2): 100614, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183997

RESUMO

B10.BR-Ydel male mice with large deletion in the male-specific region of the Y chromosome long arm (MSYq) are very useful experimental model which requires, however, more detailed characterization. In the present study, the influence of the deletion on transcript levels of MSYq genes (Ssty1, Ssty2, Sly, Srsy, Asty, Orly) and homologous to them X-linked genes (Sstx, Slx, Slxl1, Srsx) was assessed. Quantitative PCR analysis showed that in testes of B10.BR-Ydel males activity of Ssty1 is unchanged, but transcription from all other MSYq genes is highly reduced and reaches from 59 % to only 5 % of the control levels. The decrease in expression of MSYq genes is accompanied by the two-fold increase in expression of Slx and Slxl1 genes. This is the first functional characterization of the deletion in B10.BR-Ydel strain. Another aim of the study was to reveal the mechanism through which deleted Y chromosome of B10.BR-Ydel males could alter phenotype of their female progeny, what was documented in our previous works. Epigenetic inheritance hypothesis was tested by microarray analysis of DNA methylation in B10.BR-Ydel and control B10.BR sperm. The assessment revealed moderate differences and allowed concluding that the mutated Y chromosome can influence traits of females from the next generation partially through altering sperm DNA methylation, but probably some additional mechanisms are engaged here. Breeding data indicate that feminization of pre- and neonatal environment in which next generation females develop is one of such additional mechanisms.


Assuntos
Deleção Cromossômica , Metilação de DNA , Animais , Feminino , Masculino , Camundongos , Espermatozoides/metabolismo , Testículo/metabolismo , Cromossomo Y/genética
18.
Stem Cell Res ; 65: 102976, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36434993

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by abnormal glutamine (Q) expansion in the huntingtin protein due to elongated CAG repeats in the gene HTT. We used non-integrative episomal plasmids to generate induced pluripotent stem cells (iPSCs) from three individuals affected by HD: CH1 (58Q), and two twin brothers CH3 (44Q) and CH4 (44Q). The iPSC lines exhibited one healthy HTT allele and one with elongated CAG repeats, as confirmed by PCR and sequencing. All iPSC lines expressed pluripotency markers, exhibited a normal karyotype, and generated cells of the three germ layers in vitro.


Assuntos
Proteína Huntingtina , Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Irmãos , Linhagem Celular , Proteína Huntingtina/genética , Alelos , Masculino
19.
Cell Rep ; 41(10): 111751, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476864

RESUMO

The recently discovered neurological disorder NEDAMSS is caused by heterozygous truncations in the transcriptional regulator IRF2BPL. Here, we reprogram patient skin fibroblasts to astrocytes and neurons to study mechanisms of this newly described disease. While full-length IRF2BPL primarily localizes to the nucleus, truncated patient variants sequester the wild-type protein to the cytoplasm and cause aggregation. Moreover, patient astrocytes fail to support neuronal survival in coculture and exhibit aberrant mitochondria and respiratory dysfunction. Treatment with the small molecule copper ATSM (CuATSM) rescues neuronal survival and restores mitochondrial function. Importantly, the in vitro findings are recapitulated in vivo, where co-expression of full-length and truncated IRF2BPL in Drosophila results in cytoplasmic accumulation of full-length IRF2BPL. Moreover, flies harboring heterozygous truncations of the IRF2BPL ortholog (Pits) display progressive motor defects that are ameliorated by CuATSM treatment. Our findings provide insights into mechanisms involved in NEDAMSS and reveal a promising treatment for this severe disorder.

20.
Bio Protoc ; 11(5): e3939, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33796613

RESUMO

The high attrition rate in drug development processes calls for additional human-based model systems. However, in the context of brain disorders, sampling live neuronal cells for compound testing is not applicable. The use of human induced pluripotent stem cells (iPSCs) has revolutionized the field of neuronal disease modeling and drug discovery. Thanks to the development of iPSC-based neuronal differentiation protocols, including tridimensional cerebral organoids, it is now possible to molecularly dissect human neuronal development and human brain disease pathogenesis in a dish. These approaches may allow dissecting patient-specific treatment efficacy in a disease-relevant cellular context. For drug discovery approaches, however, a highly reproducible and cost-effective cell model is desirable. Here, we describe a step-by-step process for generating robust and expandable neural progenitor cells (NPCs) from human iPSCs. NPCs generated with this protocol are homogeneous and highly proliferative. These features make NPCs suitable for the development of high-throughput compound screenings for drug discovery. Human iPSC-derived NPCs show a metabolism dependent on mitochondrial activity and can therefore be used also to investigate neurological disorders in which mitochondrial function is affected. The protocol covers all steps necessary for the preparation, culture, and characterization of human iPSC-derived NPCs. Graphic abstract: Schematic of the protocol for the generation of human iPSC-derived NPCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA