Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Environ Sci Technol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137267

RESUMO

Acute oral toxicity is currently not available for most polycyclic aromatic hydrocarbons (PAHs), especially their derivatives, because it is cost-prohibitive to experimentally determine all of them. Here, quantitative structure-activity relationship (QSAR) models using machine learning (ML) for predicting the toxicity of PAH derivatives were developed, based on oral toxicity data points of 788 individual substances of rats. Both the individual ML algorithm gradient boosting regression trees (GBRT) and the stacking ML algorithm (extreme gradient boosting + GBRT + random forest regression) provided the best prediction results with satisfactory determination coefficients for both cross-validation and the test set. It was found that those PAH derivatives with fewer polar hydrogens, more large-sized atoms, more branches, and lower polarizability have higher toxicity. Software based on the optimal ML-QSAR model was successfully developed to expand the application potential of the developed model, obtaining reliable prediction of pLD50 values and reference doses for 6893 external PAH derivatives. Among these chemicals, 472 were identified as moderately or highly toxic; 10 out of them had clear environment detection or use records. The findings provide valuable insights into the toxicity of PAHs and their derivatives, offering a standard platform for effectively evaluating chemical toxicity using ML-QSAR models.

2.
Environ Sci Technol ; 57(46): 18317-18328, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37186812

RESUMO

Machine learning (ML) models were developed for understanding the root uptake of per- and polyfluoroalkyl substances (PFASs) under complex PFAS-crop-soil interactions. Three hundred root concentration factor (RCF) data points and 26 features associated with PFAS structures, crop properties, soil properties, and cultivation conditions were used for the model development. The optimal ML model, obtained by stratified sampling, Bayesian optimization, and 5-fold cross-validation, was explained by permutation feature importance, individual conditional expectation plot, and 3D interaction plot. The results showed that soil organic carbon contents, pH, chemical logP, soil PFAS concentration, root protein contents, and exposure time greatly affected the root uptake of PFASs with 0.43, 0.25, 0.10, 0.05, 0.05, and 0.05 of relative importance, respectively. Furthermore, these factors presented the key threshold ranges in favor of the PFAS uptake. Carbon-chain length was identified as the critical molecular structure affecting root uptake of PFASs with 0.12 of relative importance, based on the extended connectivity fingerprints. A user-friendly model was established with symbolic regression for accurately predicting RCF values of the PFASs (including branched PFAS isomerides). The present study provides a novel approach for profound insight into the uptake of PFASs by crops under complex PFAS-crop-soil interactions, aiming to ensure food safety and human health.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Solo/química , Carbono , Teorema de Bayes , Fluorocarbonos/análise , Aprendizado de Máquina , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 57(42): 16053-16064, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37824517

RESUMO

Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.


Assuntos
Brassica , Ciprofloxacina , Rizosfera , Nitratos , Nitrogênio/análise , Antibacterianos , Bactérias/genética , Plantas , Solo , Microbiologia do Solo
4.
Environ Sci Technol ; 55(13): 8730-8741, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34169723

RESUMO

Perfluorooctanesulfonate (PFOS) as an accumulative emerging persistent organic pollutant in crops poses severe threats to human health. Lettuce varieties that accumulate a lower amount of PFOS (low-accumulating crop variety, LACV) have been identified, but the regarding mechanisms remain unsolved. Here, rhizospheric activation, uptake, translocation, and compartmentalization of PFOS in LACV were investigated in comparison with those of high-accumulating crop variety (HACV) in terms of rhizospheric forms, transporters, and subcellular distributions of PFOS. The enhanced PFOS desorption from the rhizosphere soils by dissolved organic matter from root exudates was observed with weaker effect in LACV than in HACV. PFOS root uptake was controlled by a transporter-mediated passive process in which low activities of aquaporins and rapid-type anion channels were corrected with low expression levels of PIPs (PIP1-1 and PIP2-2) and ALMTs (ALMT10 and ALMT13) genes in LACV roots. Higher PFOS proportions in root cell walls and trophoplasts caused lower root-to-shoot transport in LACV. The ability to cope with PFOS toxicity to shoot cells was poorer in LACV relative to HACV since PFOS proportions were higher in chloroplasts but lower in vacuoles. Our findings provide novel insights into PFOS accumulation in lettuce and further understanding of multiprocess mechanisms of LACV.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes do Solo , Fluorocarbonos/análise , Humanos , Lactuca , Solo , Poluentes do Solo/análise
5.
J Hazard Mater ; 471: 134439, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677123

RESUMO

Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.


Assuntos
Microcistinas , Oligoquetos , Microbiologia do Solo , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Microcistinas/metabolismo , Microcistinas/toxicidade , Solo/química , Glutationa/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Bioacumulação
6.
J Hazard Mater ; 469: 133972, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461665

RESUMO

Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, ß-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Ésteres/metabolismo , Ácidos Ftálicos/metabolismo , Dibutilftalato/metabolismo , Biodegradação Ambiental , Ecossistema , Dietilexilftalato/metabolismo
7.
J Hazard Mater ; 476: 134873, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38908182

RESUMO

Xanthates, common mining flotation reagents, strongly bind thiophilic metals such as copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) and consequentially change their bioavailability and mobility upon their discharge into the environment. However, accurate quantification of the metal-xanthate complexes has remained elusive. This study develops a novel and robust method that realizes the accurate quantification of the metal-xanthate complexes resulted from single and multiple reactions of three typical xanthates (ethyl, isopropyl, and butyl xanthates) and four thiophilic metals (Cu, Pb, Cd, and Zn) in water samples. This method uses sulfur (S2-) dissociation, followed by tandem solid phase extraction of C18 + PWAX and subsequent LC-MS/MS analysis. It has a wide linearity range (1-1000 µg/L, R2 ≥ 0.995), low method detection limits (0.002-0.036 µg/L), and good recoveries (70.6-107.0 %) at 0.01-10 mg/L of xanthates. Applications of this method showed ubiquitous occurrence of the metal-xanthate complexes as the primary species in flotation wastewaters, which the concentrations were 4.6-28.9-fold higher than those previously determined. It is the first quantitative method established for the analysis of metal-xanthate complexes in water samples, which is of great importance to comprehensively understand the fate and risks of xanthates in the environment.

8.
Commun Biol ; 7(1): 920, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39080448

RESUMO

Lettuce is one of the most widely cultivated and consumed dicotyledonous vegetables globally. Despite the availability of its reference genome sequence, lettuce gene annotation remains incomplete, impeding comprehensive research and the broad application of genomic resources. Long-read RNA isoform sequencing (Iso-Seq) offers substantial advantages for analyzing RNA alternative splicing and aiding gene annotation, yet it faces throughput limitations. We present the HIT-ISOseq method tailored for bulk sample analysis, significantly enhancing RNA sequencing throughput on the PacBio platform by concatenating cDNA. Here we show, HIT-ISOseq generates 3-4 cDNA molecules per CCS read in lettuce, yielding 15.7 million long reads per PacBio Sequel II SMRT Cell 8 M. We validate its effectiveness in analyzing six lettuce tissue samples, including roots, stems, and leaves, revealing tissue-specific gene expression patterns and RNA isoforms. Leveraging diverse tissue long-read RNA sequencing, we refine the transcript annotation of the lettuce reference genome, expanding its GO and KEGG annotation repertoire. Collectively, this study serves as a foundational reference for genome annotation and the analysis of multi-sample isoform expression, utilizing high-throughput long-read transcriptome sequencing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Lactuca , Análise de Sequência de RNA , Lactuca/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , RNA de Plantas/genética , Especificidade de Órgãos/genética , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Processamento Alternativo , Isoformas de RNA/genética , Genes de Plantas
9.
Chemosphere ; 311(Pt 1): 137046, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36419272

RESUMO

Potential adverse effects of microcystin-LR (MC-LR) on soil invertebrates have not been studied. Here we investigated the mechanism of MC-LR toxicity to earthworm (Eisenia fetida) intestine at the individual level and at the cellular level. The results showed an inverse relationship between the bodyweight and survival rate of earthworms over exposure time- and MC-LR doses in soil. Dose-dependent intestinal lesions and disturbances of enzymatic activities (e.g., cellulase, Na+/K+-ATPase, and AChE) were observed, which resulted in intestinal dysfunction. Excessive reactive oxygen species generation led to DNA damage and lipid peroxidation of intestinal cells. The oxidative damage to DNA prolonged cell cycle arrest at the G2/M-phase transition in mitosis, thus stimulating and accelerating apoptosis in earthworm intestine. MC-LR target earthworm intestine tissue. MC-LR at low concentrations can damage earthworm intestine regardless of exposure routes (oral or contact). High toxicity of MC-LR to earthworms delineates its ecological risks to terrestrial ecosystems.


Assuntos
Oligoquetos , Animais , Ecossistema , Intestinos , Solo
10.
J Agric Food Chem ; 71(30): 11704-11715, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477475

RESUMO

Fluorotelomer alcohols (FTOHs), as precursors of perfluoroalkyl carboxylic acids, are difficult to analyze due to their high volatility and matrix interference. A method based on single-factor experiments and response surface methodology design was developed for simultaneous analysis of three common FTOHs in vegetables and soils, using single extraction, dispersive solid phase extraction cleanup, and gas chromatography-mass spectrometry in negative chemical ionization. The method improved the extraction efficiency up to ∼40 folds and showed a commendable linearity range (1-100 ng/mL, R2 > 0.991), low limit of detection (0.025-0.897 ng/g, dry weight (dw)), and high accuracy and precision (83 ± 7.2-117 ± 6.0% recoveries at 2-20 ng/g fortification levels). It was successfully applied to determine the FTOHs in real vegetables and soils, demonstrating its feasibility for routine analysis. Concentrations of the FTOHs ranged from 3.5 to 37.9 ng/g (dw) and from 6.5 to 141.0 ng/g (dw), respectively, in the vegetables and soils collected nearby fluorochemical factories, which warrants further investigations on FTOH pollution and food safety concerns for which the developed method will be useful.


Assuntos
Fluorocarbonos , Verduras , Solo , Fluorocarbonos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Álcoois/química
11.
J Hazard Mater ; 449: 130994, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36821898

RESUMO

Microplastics (MPs) usually coexist with heavy metals (HMs) in soil. MPs can influence HMs mobility and bioavailability, but the underlying mechanisms remain largely unexplored. Here, polyethylene and polypropylene MPs were selected to investigate their effects and mechanisms of sorption-desorption, bioaccessibility and bioavailability of cadmium (Cd) in paddy soil. Batch experiments indicated that MPs significantly reduced the Cd sorption in soil (p < 0.05). Accordingly, soil with the MPs had lower boundary diffusion constant of Cd (C1= 0.847∼1.020) and the Freundlich sorption constant (KF = 0.444-0.616) than that without the MPs (C1 = 0.894∼1.035, KF = 0.500-0.655). X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses suggested that the MPs reduced Cd chemisorption, by covering the soil active sites and thus blocking complexation of Cd with active oxygen sites and interrupting the formation of CdCO3 and Cd3P2 precipitates. Such effects of MPs enhanced about 1.2-1.5 times of Cd bioaccessibility and bioavailability in soil. Almost the same effects but different mechanisms of polyethylene and polypropylene MPs on Cd sorption in the soil indicated the complexity and pervasiveness of their effects. The findings provide new insights into impacts of MPs on the fate and risk of HMs in agricultural soil.


Assuntos
Metais Pesados , Poluentes do Solo , Microplásticos/química , Cádmio/química , Plásticos/química , Solo , Polietileno/química , Polipropilenos , Disponibilidade Biológica , Adsorção , Poluentes do Solo/análise
12.
J Hazard Mater ; 456: 131668, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224713

RESUMO

Aniline aerofloat (AAF) is a refractory organic pollutant in floatation wastewater. Little information is currently available on its biodegradation. In this study, a novel AAF-degrading strain named Burkholderia sp. WX-6 was isolated from mining sludge. The strain could degrade more than 80% of AAF at different initial concentrations (100-1000 mg/L) within 72 h. AAF degrading curves were fitted well with the four-parameter logistic model (R2 >0.97), with the degrading half-life ranging from 16.39 to 35.55 h. This strain harbors metabolic pathway for complete degradation of AAF and is resistant to salt, alkali, and heavy metals. Immobilization of the strain on biochar enhanced both tolerance to extreme conditions and AAF removal, with up to 88% of AAF removal rate in simulated wastewater under alkaline (pH 9.5) or heavy metal pollution condition. In addition, the biochar-immobilized bacteria removed 59.4% of COD in the wastewater containing AAF and mixed metal ions within 144 h, significantly (P < 0.05) higher than those by free bacteria (42.6%) and biochar (48.2%) only. This work is helpful to understand AAF biodegradation mechanism and provides viable references for developing practical biotreatment technique of mining wastewater.


Assuntos
Carvão Vegetal , Águas Residuárias , Biodegradação Ambiental , Compostos de Anilina
13.
J Hazard Mater ; 431: 128571, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278968

RESUMO

Microcystins are frequently detected in cyanobacterial bloom-impacted sites; however, their mobility potential in soils is poorly understood. This study aimed to elucidate the sorption behaviors of microcystin-RR (MC-RR) in heterogeneous soils and evaluate critical affecting factors. MC-RR sorption followed the pseudo-second-order kinetics and Freundlich model. All isotherms (n = 0.83-1.03) had no or minor deviations from linearity. The linear distribution coefficients (Kd) varied from 2.64 to 15.2 across soils, depending mainly on OM and CEC. Stepwise regression analysis indicated that the Kd was predictable by the fitting formula of: Kd = 2.56 + 0.15OM + 0.28CEC (R2 = 0.45). The sorption was an endothermic physisorption process, involving electrostatic forces, cation exchange and bridging, H-bonding, ligand exchange, and van der Waals forces. The sorption of MC-RR (dominantly behaved as electroneutral zwitterions) at pH > 5 was insensitive to pH change, while more MC-RR (anionic species) was adsorbed at lower pH and in the presence of Ca2+. The study provides insights into the sorption of MC-RR across a range of soil properties and water chemistry for the first time, which is of importance for a better understanding of the mobility potential of microcystins in the terrestrial systems.


Assuntos
Cianobactérias , Poluentes do Solo , Adsorção , Microcistinas/química , Solo/química , Poluentes do Solo/análise
14.
J Agric Food Chem ; 69(40): 11825-11834, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582220

RESUMO

Microcystins (MCs) are hepatotoxic heptapeptides identified in cyanobacterial bloom-impacted waters and soils. However, their environmental fate in soils is poorly understood, preventing reliable site assessment. This study aims to clarify the variant-specific adsorption, desorption, and dissipation of MC-LR and MC-RR in agricultural soils. Results revealed that their adsorption isotherms followed the Freundlich model (R2 ≥ 0.96), exhibiting a higher nonlinear trend and lower adsorption capacity for MC-LR than for MC-RR. The soils had low desorption rates of 8.14-21.06% and 3.06-34.04%, respectively, following a 24 h desorption cycle. Pairwise comparison indicated that soil pH and clay played key roles in MC-LR adsorption and desorption, while organic matter and cation exchange capacity played key roles in those of MC-RR. MC-LR dissipation half-lives in soils were 27.18-42.52 days, compared with 35.19-43.87 days for MC-RR. Specifically, an appreciable decrease in MC concentration in sterile soils suggested the significant role of abiotic degradation. This study demonstrates that the minor structural changes in MCs might have major effects on their environmental fates in agricultural soil and indicates that the toxic effects of MCs should be of high concern due to high adsorption, low desorption, and slow dissipation.


Assuntos
Cianobactérias , Microcistinas , Adsorção , Agricultura , Solo
15.
Sci Total Environ ; 763: 143028, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129529

RESUMO

The growing incidence of microcystins (MCs) in the environment has become an issue of global concern for the high ecological and human health risks. Herein, a comparative adsorption of three MCs (MC-LR, MC-YR and MC-RR) by spent mushroom substrate (SMS)-derived biochars from contrasting pyrolytic conditions (temperature: 600/300 °C; and gas steam: CO2/N2) was surveyed to better understand the mechanisms and factors affecting the adsorption performance. For biochar preparation, 600 °C and CO2 led to greater levels of aromaticity, ash, SBET, and porosity, while 300 °C and N2 created more surface functional groups. The adsorption of MCs by biochars was a pH-dependent and endothermic physisorption process, following the pseudo-second-order kinetics (R2 = 0.99) and linear isotherm model (R2 > 0.88). The distribution coefficients Kd (0.98-19.2 L/kg) varied greatly among MCs (MC-YR > MC-RR > MC-LR) and biochars (BC600 > BN600 > BC300 > BN300), which depends on the combined effects of hydrophobicity, electrostatic attraction, H-bonding, cation bridging, and the amounts of adsorption sites on biochars. Higher ash, SBET, and total pore volume of BC600 facilitated the adsorption capacity for MCs relative to other biochars. Furthermore, the co-adsorption efficacy for MCs (Kd = 1.09-8.86 L/kg) was far below those for the single adsorption, indicating strong conflicts among competing MCs. This study sheds light on the roles of pyrolytic temperature and gas steam in biochar properties, and elucidates the mechanisms and factors affecting the adsorption performance of different MCs, which lays a foundation for MCs removal from water.


Assuntos
Carvão Vegetal , Microcistinas , Adsorção , Humanos , Pirólise
16.
J Hazard Mater ; 408: 124901, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360702

RESUMO

A novel PAE-hydrolyzing esterase (named Hyd) gene was screened from the genomic library of Rhodococcus sp. 2G and was successfully expressed in heterologous E. coli, which was defined as a new family of esterolytic enzymes. The purified Hyd could efficiently degrade various PAEs, displaying high activity and stability with a broad range of pH (4-10) and temperature (20-60 °C). Interaction mechanism of Hyd with dibutyl phthalate (DBP) was investigated by integrated multi-spectroscopic and docking simulation methods. Fluorescence and UV-vis spectra revealed that DBP could quench the fluorescence of Hyd through a static quenching mechanism. The results from synchronous fluorescence and CD spectra confirmed that the DBP binding to Hyd triggered conformational and micro-environmental changes of Hyd, which were characterized by increased stretching extent and random coil, and decreased α-helix and ß-sheet. Molecular docking study showed that DBP could be bound to the cavity of Hyd with hydrogen bonding and hydrophobic interaction. A novel and distinctive catalytic mechanism was proposed: two key residues Thr190 and Ser191 might catalyze the hydrolysis of DBP, instead of the conserved catalytic triad (Ser-His-Asp) reported elsewhere, which was confirmed by site-directed mutagenesis.


Assuntos
Ésteres , Ácidos Ftálicos , Catálise , Dibutilftalato , Escherichia coli , Esterases/genética , Hidrólise , Simulação de Acoplamento Molecular
17.
Sci Total Environ ; 761: 143208, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33162130

RESUMO

Phthalate acid esters (PAEs) are environmentally ubiquitous and have aroused a worldwide concern due to their threats to environment and human health. Di-n-butyl phthalate (DBP) is one of the most frequently observed PAEs in the environment. In this study, a novel bacterium identified as Pseudomonas sp. YJB6 that isolated from PAEs-contaminated soil was determined to have strong DBP-degrading activity. A complete degradation of DBP in 200 mg/L was achieved within 3 days when YJB6 was cultivated at 31.4 °C with an initial inoculation size of 0.6 (OD600) in basic mineral salts liquid medium (MSM), pH 7.6. The degradation curves of DBP (50-2000 mg/L) fitted well the first-order kinetics model, with a half-life (t1/2) ranging from 0.86 to 1.88 d. The main degradation intermediates were identified as butyl-ethyl phthalate (BEP), mono-butyl phthalate (MBP), phthalic acid (PA) and benzoic acid (BA), indicating a new complex and complete biodegradation pathway presented by YJB6. DBP might be metabolized through de-esterification, ß-oxidation, and hydrolysis, followed by entering the Krebs cycle of YJB6 as a final step. Strain YJB6 was successfully immobilized with sodium alginate (SA), polyvinyl alcohol (PVA), and SA-PVA. The immobilization significantly improved the stability and adaptability of the cells thus resulting in high volumetric DBP-degrading rates compared to that of the freely suspended cells. In addition, these immobilized cells can be reused for many cycles with well conserved in DBP-degrading activity. The ideal DBP degrading ability of the free and immobilized YJB6 cells suggests that strain YJB6, especially the SA-PVA+ YJB6 promises great potential to remove hazardous PAEs.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Biodegradação Ambiental , Dibutilftalato , Ésteres , Humanos , Hidrólise , Pseudomonas
18.
Toxins (Basel) ; 12(8)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823916

RESUMO

Microcystin-LR (MC-LR) is prevalent in water and can be translocated into soil-crop ecosystem via irrigation, overflow (pollution accident), and cyanobacterial manure applications, threatening agricultural production and human health. However, the effects of various input pathways on the bioaccumulation and toxicity of MCs in terrestrial plants have been hardly reported so far. In the present study, pot experiments were performed to compare the bioaccumulation, toxicity, and health risk of MC-LR as well as its degradation in soils among various treatments with the same total amount of added MC-LR (150 µg/kg). The treatments included irrigation with polluted water (IPW), cultivation with polluted soil (CPS), and application of cyanobacterial manure (ACM). Three common leaf-vegetables in southern China were used in the pot experiments, including Ipomoea batatas L., Brassica juncea L., and Brassica alboglabra L. All leaf vegetables could bioaccumulate MC-LR under the three treatments, with much higher MC-LR bioaccumulation, especially root bioconcentration observed in ACM treatment than IPW and CPS treatments. An opposite trend in MC-LR degradation in soils of these treatments indicated that ACM could limit MC-LR degradation in soils and thus promote its bioaccumulation in the vegetables. MC-LR bioaccumulation could cause toxicity to the vegetables, with the highest toxic effects observed in ACM treatment. Similarly, bioaccumulation of MC-LR in the edible parts of the leaf-vegetables posed 1.1~4.8 fold higher human health risks in ACM treatment than in IPW and CPS treatments. The findings of this study highlighted a great concern on applications of cyanobacterial manure.


Assuntos
Bioacumulação , Toxinas Marinhas/análise , Toxinas Marinhas/metabolismo , Microcistinas/análise , Microcistinas/metabolismo , Verduras/química , Verduras/toxicidade , Toxinas Bacterianas/análise , Toxinas Bacterianas/metabolismo , Biodegradação Ambiental , China , Produtos Agrícolas/química , Produtos Agrícolas/toxicidade , Cianobactérias/metabolismo , Ecossistema , Contaminação de Alimentos , Humanos , Medição de Risco , Microbiologia do Solo
19.
Sci Total Environ ; 726: 138573, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32311574

RESUMO

Microbial fuel cell (MFC), a promising bio-electrochemical reactor could decompose organics in wastewater by redox processes of electro-active microorganism in anode and produce bio-energy, and the total MFC performance could mainly rely on electrochemical performance anode. Here, biomass carbon derived from municipal sludge was employed as low-cost and high-performance bio-anode for enhancing bioelectricity generation and wastewater treatment in MFC simultaneously. The electrochemical tests demonstrated that the large electrochemical active surface area, strong conductivity, and good biocompatibility in sludge carbon (SC) electrode resulted in higher power density (615.2 mW m-2) and lower power loss (5.4%) than those of none carbon (NC) electrode in long term operation. After 30-cycle of continuous running, the low loss of chemical oxygen demand (COD) removal was achieved up to 5.2%, which was smaller than that of NC electrode (14.1%), indicating that the MFC with SC anode could effectively treat wastewater and keep stable redox processes in anode electrode. After the formation of biofilm, the charge transfer resistance of SC electrode (16.38 Ω) was 72.4% lower than that of NC electrode (59.35 Ω). High-throughput analysis of biofilm exhibit Proteobacteria was the dominant electro-active bacteria, and the modification of SC could slightly change the bacterial community. Therefore, resource utilization of natural wastes provided the novel concept of anode catalyst fabrication for MFC in enhancing electron transfer, power output and wastewater decomposition.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Biomassa , Carbono , Fibra de Carbono , Eletricidade , Eletrodos , Esgotos
20.
Environ Int ; 133(Pt A): 105142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513927

RESUMO

Frequent cyanobacterial blooms in the eutrophic waters produce a variety of toxins such as the monocyclic heptapeptide microcystins, greatly harming aquatic ecosystems and human health. However, little information of microcystins in agricultural fields is known. This field study of three common microcystin variants (MC-LR, MC-RR, and MC-YR) in vegetables (n = 161), soils (n = 161) and irrigation water samples (n = 23) collected from southern China regions affected by cyanobacteria blooms, shows their prevalence with total concentrations up to 514 µg/L water, 187 µg/kg soil (dry weight) and 382 µg/kg vegetable (fresh weight). MC-RR was the primary variant in all types of samples, accounting for 51.3-100% of total microcystin concentrations. Significant concentration-dependent correlations (p < 0.05) demonstrated that microcystin-contained irrigation waters were the major source of microcystin accumulation in both vegetables and soils. Meanwhile, intracellular-microcystins in irrigation water was found to play an important role in microcystins bioaccumulation in vegetables for the first time. Most vegetable samples (≥60%), particularly celery posed moderate or high human health risk via diet based on toxicity equivalents of the microcystins and reference dose for MC-LR (0.04 µg/kg/d), showing high food safety hidden dangers. Soil microcystins, especially MC-RR in 46.4-88.3% of soils could pose high ecological risks. This study highlights the potential high ecological and human health risks of microcystins in the real soil-vegetable systems of areas affected by cyanobacteria blooms, implying the profound significance and urgent need of investigation on microcystins in terrestrial ecosystems.


Assuntos
Microcistinas/química , Poluentes do Solo/toxicidade , Solo/química , Verduras , China , Cianobactérias/metabolismo , Humanos , Microcistinas/metabolismo , Microcistinas/toxicidade , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA