Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Pept Sci ; 23(11): 824-832, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833783

RESUMO

Cationic antimicrobial peptides have attracted increasing attention as a novel class of antibiotics to treat infectious diseases caused by pathogenic bacteria. However, susceptibility to protease is a shortcoming in their development. Cyclization is one approach to increase the proteolytic resistance of peptides. Therefore, to improve the proteolytic resistance of Polybia-MPI, we have synthesized the MPI cyclic analogs C-MPI-1 (i-to-i+4) and C-MPI-2 (i-to-i+6) by copper(I)-catalyzed azide-alkyne cycloaddition. Compared with MPI, C-MPI-1 displayed sustained antimicrobial activity and had enhanced anti-trypsin resistance, while C-MPI-2 displayed no antimicrobial activity. The relationship between peptide structure and bioactivity was further investigated by probing the secondary structure of the peptides by circular dichroism. This showed that C-MPI-1 adopted an α-helical structure in aqueous solution and, interestingly, had increased α-helical conformation in 30 mM sodium dodecyl sulfate and 50% trifluoroethyl alcohol compared with MPI. C-MPI-2 that was not α-helical in structure, suggesting that the propensity for α-helix conformation may play an important role in cyclic peptide design. In addition, scanning electron microscopy, propidium iodide uptake, and membrane permeabilization assays indicated that MPI and the optimized analog C-MPI-1 had membrane-active action modes, indicating that the peptides would not be susceptible to conventional resistance mechanisms. Our study provides additional insight into the influence of intramolecular cyclization at various positions on peptide structure and biological activity. In conclusion, the design and synthesis of cyclic analogs via click chemistry offer a new strategy for the development of stable antimicrobial agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Venenos de Vespas/química , Sequência de Aminoácidos , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ciclização , Estabilidade de Medicamentos , Hemólise , Testes de Sensibilidade Microbiana , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteólise , Triazóis/química , Triazóis/farmacologia , Venenos de Vespas/farmacologia
2.
Peptides ; 88: 115-125, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28040477

RESUMO

Currently, antimicrobial peptides have attracted considerable attention because of their broad-sprectum activity and low prognostic to induce antibiotic resistance. In our study, for the first time, a series of side-chain hybrid dimer peptides J-AA (Anoplin-Anoplin), J-RR (RW-RW), and J-AR (Anoplin-RW) based on the wasp peptide Anoplin and the arginine- and tryptophan-rich hexapeptide RW were designed and synthesized by click chemistry, with the intent to improve the antimicrobial efficacy of peptides against bacterial pathogens. The results showed that all dimer analogues exhibited up to a 4-16 fold increase in antimicrobial activity compared to the parental peptides against bacterial strains. Furthermore, the antimicrobial activity was confirmed by time-killing kinetics assay with two strains which showed that these dimer analogues at 1, 2×MIC were rapidly bactericidal and reduced the initial inoculum significantly during the first 2-6h. Notably, dimer peptides showed synergy and additivity effects when used in combination with conventional antibiotics rifampin or penicillin respectively against the multidrug-resistant strains. In the Escherichia coli-infected mouse model, all of hybrid dimer analogues had significantly lower degree of bacterial load than the untreated control group when injected once i.p. at 5mg/kg. In addition, the infected mice by methicillin-resistant (MRSA) strain could be effectively treated with J-RR. All of dimer analogues had membrane-active action mode. And the membrane-dependent mode of action signifies that peptides functions freely and without regard to conventional resistant mechanisms. Circular dichroism analyses of all dimer analogues showed a general predominance of α-helix conformation in 50% trifluoroethanol (TFE). Additionally, the acute toxicities study indicated that J-RR or J-AR did not show the signs of toxicity when adult mice exposed to concentration up to 120mg/kg. The 50% lethal dose (LD50) of J-AA was 53.6mg/kg. In conclusion, to design and synthesize side chain-hybrid dimer analogues via click chemistry may offer a new strategy for antibacterial therapeutic option.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Venenos de Vespas/farmacologia , Sequência de Aminoácidos/genética , Animais , Antibacterianos/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Sinergismo Farmacológico , Escherichia coli/patogenicidade , Cadeias J de Imunoglobulina/química , Cadeias J de Imunoglobulina/farmacologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Multimerização Proteica , Rifampina/farmacologia , Triazóis/química , Venenos de Vespas/química , Venenos de Vespas/genética , Vespas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA