Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7838): 419-423, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328665

RESUMO

A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce2) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer)1,2. The QAH effect has been realized in magnetic topological insulators3-9 and magic-angle twisted bilayer graphene10,11. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.

2.
Nat Mater ; 23(1): 58-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857889

RESUMO

A quantum anomalous Hall (QAH) insulator is a topological phase in which the interior is insulating but electrical current flows along the edges of the sample in either a clockwise or counterclockwise direction, as dictated by the spontaneous magnetization orientation. Such a chiral edge current eliminates any backscattering, giving rise to quantized Hall resistance and zero longitudinal resistance. Here we fabricate mesoscopic QAH sandwich Hall bar devices and succeed in switching the edge current chirality through thermally assisted spin-orbit torque (SOT). The well-quantized QAH states before and after SOT switching with opposite edge current chiralities are demonstrated through four- and three-terminal measurements. We show that the SOT responsible for magnetization switching can be generated by both surface and bulk carriers. Our results further our understanding of the interplay between magnetism and topological states and usher in an easy and instantaneous method to manipulate the QAH state.

3.
Nucleic Acids Res ; 51(13): e73, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293974

RESUMO

Mitochondrial DNA (mtDNA) modifications play an emerging role in innate immunity and inflammatory diseases. Nonetheless, relatively little is known regarding the locations of mtDNA modifications. Such information is critically important for deciphering their roles in mtDNA instability, mtDNA-mediated immune and inflammatory responses, and mitochondrial disorders. The affinity probe-based enrichment of lesion-containing DNA represents a key strategy for sequencing DNA modifications. Existing methods are limited in the enrichment specificity of abasic (AP) sites, a prevalent DNA modification and repair intermediate. Herein, we devise a novel approach, termed dual chemical labeling-assisted sequencing (DCL-seq), for mapping AP sites. DCL-seq features two designer compounds for enriching and mapping AP sites specifically at single-nucleotide resolution. For proof of principle, we mapped AP sites in mtDNA from HeLa cells under different biological conditions. The resulting AP site maps coincide with mtDNA regions with low TFAM (mitochondrial transcription factor A) coverage and with potential G-quadruplex-forming sequences. In addition, we demonstrated the broader applicability of the method in sequencing other DNA modifications in mtDNA, such as N7-methyl-2'-deoxyguanosine and N3-methyl-2'-deoxyadenosine, when coupled with a lesion-specific repair enzyme. Together, DCL-seq holds the promise to sequence multiple DNA modifications in various biological samples.


Assuntos
DNA Mitocondrial , Humanos , Alquilação , Dano ao DNA , Reparo do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células HeLa , Nucleotídeos , Análise de Sequência de DNA
4.
Nano Lett ; 24(23): 6974-6980, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829211

RESUMO

The plateau phase transition in quantum anomalous Hall (QAH) insulators corresponds to a quantum state wherein a single magnetic domain gives way to multiple domains and then reconverges back to a single magnetic domain. The layer structure of the sample provides an external knob for adjusting the Chern number C of the QAH insulators. Here, we employ molecular beam epitaxy to grow magnetic topological insulator multilayers and realize the magnetic field-driven plateau phase transition between two QAH states with odd Chern number change ΔC. We find that critical exponents extracted for the plateau phase transitions with ΔC = 1 and ΔC = 3 in QAH insulators are nearly identical. We construct a four-layer Chalker-Coddington network model to understand the consistent critical exponents for the plateau phase transitions with ΔC = 1 and ΔC = 3. This work will motivate further investigations into the critical behaviors of plateau phase transitions with different ΔC in QAH insulators.

5.
Phys Rev Lett ; 132(6): 066604, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394580

RESUMO

We propose an intrinsic mechanism to understand the even-odd effect, namely, opposite signs of anomalous Hall resistance and different shapes of hysteresis loops for even and odd septuple layers (SLs), of MBE-grown MnBi_{2}Te_{4} thin films with electron doping. The nonzero hysteresis loops in the anomalous Hall effect and magnetic circular dichroism for even-SLs MnBi_{2}Te_{4} films originate from two different antiferromagnetic (AFM) configurations with different zeroth Landau level energies of surface states. The complex form of the anomalous Hall hysteresis loop can be understood from two magnetic transitions, a transition between two AFM states followed by a second transition to the ferromagnetic state. Our model also clarifies the relationship and distinction between axion parameter and magnetoelectric coefficient, and shows an even-odd oscillation behavior of magnetoelectric coefficients in MnBi_{2}Te_{4} films.

6.
Nat Mater ; 21(12): 1366-1372, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302957

RESUMO

A topological insulator (TI) interfaced with an s-wave superconductor has been predicted to host topological superconductivity. Although the growth of epitaxial TI films on s-wave superconductors has been achieved by molecular-beam epitaxy, it remains an outstanding challenge for synthesizing atomically thin TI/superconductor heterostructures, which are critical for engineering the topological superconducting phase. Here we used molecular-beam epitaxy to grow Bi2Se3 films with a controlled thickness on monolayer NbSe2 and performed in situ angle-resolved photoemission spectroscopy and ex situ magnetotransport measurements on these heterostructures. We found that the emergence of Rashba-type bulk quantum-well bands and spin-non-degenerate surface states coincides with a marked suppression of the in-plane upper critical magnetic field of the superconductivity in Bi2Se3/monolayer NbSe2 heterostructures. This is a signature of a crossover from Ising- to Rashba-type superconducting pairings, induced by altering the Bi2Se3 film thickness. Our work opens a route for exploring a robust topological superconducting phase in TI/Ising superconductor heterostructures.

7.
Phys Rev Lett ; 130(8): 086201, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898119

RESUMO

In quantum anomalous Hall (QAH) insulators, the interior is insulating but electrons can travel with zero resistance along one-dimensional (1D) conducting paths known as chiral edge channels (CECs). These CECs have been predicted to be confined to the 1D edges and exponentially decay in the two-dimensional (2D) bulk. In this Letter, we present the results of a systematic study of QAH devices fashioned in a Hall bar geometry of different widths under gate voltages. At the charge neutral point, the QAH effect persists in a Hall bar device with a width of only ∼72 nm, implying the intrinsic decaying length of CECs is less than ∼36 nm. In the electron-doped regime, we find that the Hall resistance deviates quickly from the quantized value when the sample width is less than 1 µm. Our theoretical calculations suggest that the wave function of CEC first decays exponentially and then shows a long tail due to disorder-induced bulk states. Therefore, the deviation from the quantized Hall resistance in narrow QAH samples originates from the interaction between two opposite CECs mediated by disorder-induced bulk states in QAH insulators, consistent with our experimental observations.

8.
Nano Lett ; 22(24): 9815-9822, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36315185

RESUMO

Tailoring magnetic orders in topological insulators is critical to the realization of topological quantum phenomena. An outstanding challenge is to find a material where atomic defects lead to tunable magnetic orders while maintaining a nontrivial topology. Here, by combining magnetization measurements, angle-resolved photoemission spectroscopy, and transmission electron microscopy, we reveal disorder-enabled, tunable magnetic ground states in MnBi6Te10. In the ferromagnetic phase, an energy gap of 15 meV is resolved at the Dirac point on the MnBi2Te4 termination. In contrast, antiferromagnetic MnBi6Te10 exhibits gapless topological surface states on all terminations. Transmission electron microscopy and magnetization measurements reveal substantial Mn vacancies and Mn migration in ferromagnetic MnBi6Te10. We provide a conceptual framework where a cooperative interplay of these defects drives a delicate change of overall magnetic ground state energies and leads to tunable magnetic topological orders. Our work provides a clear pathway for nanoscale defect-engineering toward the realization of topological quantum phases.

9.
Phys Rev Lett ; 128(16): 166601, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522500

RESUMO

Nontrivial momentum-space spin texture of electrons can be induced by spin-orbit coupling and underpins various spin transport phenomena, such as current-induced spin polarization and the spin Hall effect. In this work, we find a nontrivial spin texture, spin antivortex, can appear at certain momenta on the Γ-K line in a 2D monolayer Pb on top of SiC. Different from spin vortex due to the band degeneracy in the Rashba model, the existence of this spin antivortex is guaranteed by the Poincaré-Hopf theorem and thus topologically stable. Accompanied with this spin antivortex, a Lifshitz transition of Fermi surfaces occurs at certain momenta on the K-M line, and both phenomena are originated from the anticrossing between the j=1/2 and j=3/2 bands. A rapid variation of the response coefficients for both the current-induced spin polarization and spin Hall conductivity is found when the Fermi energy is tuned around the spin antivortex. Our work demonstrates the monolayer Pb as a potentially appealing platform for spintronic applications.

10.
Phys Rev Lett ; 129(27): 277001, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638298

RESUMO

In this Letter, we establish a new theoretical paradigm for vortex Majorana physics in the recently discovered topological iron-based superconductors (TFeSCs). While TFeSCs are widely accepted as an exemplar of topological insulators (TIs) with intrinsic s-wave superconductivity, our theory implies that such a common belief could be oversimplified. Our main finding is that the normal-state bulk Dirac nodes, usually ignored in TI-based vortex Majorana theories for TFeSCs, will play a key role of determining the vortex state topology. In particular, the interplay between TI and Dirac nodal bands will lead to multiple competing topological phases for a superconducting vortex line in TFeSCs, including an unprecedented hybrid topological vortex state that carries both Majorana bound states and a gapless dispersion. Remarkably, this exotic hybrid vortex phase generally exists in the vortex phase diagram for our minimal model for TFeSCs and is directly relevant to TFeSC candidates such as LiFeAs. When the fourfold rotation symmetry is broken by vortex-line tilting or curving, the hybrid vortex gets topologically trivialized and becomes Majorana free, which could explain the puzzle of ubiquitous trivial vortices observed in LiFeAs. The origin of the Majorana signal in other TFeSC candidates such as FeTe_{x}Se_{1-x} and CaKFe_{4}As_{4} is also interpreted within our theory framework. Our theory sheds new light on theoretically understanding and experimentally engineering Majorana physics in high-temperature iron-based systems.

11.
Phys Rev Lett ; 128(21): 216801, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687436

RESUMO

The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (QAH) insulators with tunable Chern numbers introduces the channel degree of freedom to the dissipation-free chiral edge transport and makes the study of the quantum phase transition between two topological states under zero magnetic field possible. Here, we synthesized the magnetic topological insulator (TI)/TI pentalayer heterostructures with different Cr doping concentrations in the middle magnetic TI layers using molecular beam epitaxy. By performing transport measurements, we found a potential plateau phase transition between C=1 and C=2 QAH states under zero magnetic field. In tuning the transition, the Hall resistance monotonically decreases from h/e^{2} to h/2e^{2}, concurrently, the longitudinal resistance exhibits a maximum at the critical point. Our results show that the ratio between the Hall resistance and the longitudinal resistance is greater than 1 at the critical point, which indicates that the original chiral edge channel from the C=1 QAH state coexists with the dissipative bulk conduction channels. Subsequently, these bulk conduction channels appear to self-organize and form the second chiral edge channel in completing the plateau phase transition. Our study will motivate further investigations of this novel Chern number change-induced quantum phase transition and advance the development of the QAH chiral edge current-based electronic and spintronic devices.

12.
Nano Lett ; 21(18): 7691-7698, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34468149

RESUMO

Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator and the quantum anomalous Hall (QAH) effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBi2Te4 films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a nonsquare hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL. The hysteresis loop can be separated into two AH components. We demonstrated that one AH component with the larger coercive field is from the dominant MnBi2Te4 phase, whereas the other AH component with the smaller coercive field is from the minor Mn-doped Bi2Te3 phase. The extracted AH component of the MnBi2Te4 phase shows a clear even-odd layer-dependent behavior. Our studies reveal insights on how to optimize the MBE growth conditions to improve the quality of MnBi2Te4 films.

13.
Anal Chem ; 93(46): 15445-15451, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34775754

RESUMO

Albeit with low content, 5-formyluracil has been an important modification in genomic DNA. 5-formyluracil was found to be widely distributed among living bodies. Due to the equilibrium of keto-enol form, 5-formyluracil could be base-paired with guanine, thus inducing mutations in DNA. The highly reactive aldehyde group of 5-formyluracil could also cross-link with proteins nearby, preventing gene replication and expression. In certain cancerous tissues, the content of 5-formyluracil was found to be higher than the normal tissues adjacent to the tumor, and 5-formyluracil might be an important potential epigenetic mark. Nevertheless, the lack of a higher resolution sequencing technique has hampered the studies of 5-formyluracil. We adjusted the base-pairing of 5-formyluracil during the PCR amplification by changing the pH. Hence, we adopted the Alkaline Modulated 5-formyluracil Sequencing (AMfU-Seq), a single-base resolution analysis method, to profile 5-formyluracil at the genome scale. We analyzed the distribution of 5-formyluracil in the human thyroid carcinoma cells using AMfU-Seq. This technique can be used in the future investigations of 5-formyluracil.


Assuntos
DNA , Uracila , DNA/genética , Genômica , Guanina , Humanos , Uracila/análogos & derivados
14.
Nat Mater ; 19(7): 732-737, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32015537

RESUMO

The quantum anomalous Hall (QAH) effect is a consequence of non-zero Berry curvature in momentum space. The QAH insulator harbours dissipation-free chiral edge states in the absence of an external magnetic field. However, the topological Hall (TH) effect, a hallmark of chiral spin textures, is a consequence of real-space Berry curvature. Here, by inserting a topological insulator (TI) layer between two magnetic TI layers, we realized the concurrence of the TH effect and the QAH effect through electric-field gating. The TH effect is probed by bulk carriers, whereas the QAH effect is characterized by chiral edge states. The appearance of the TH effect in the QAH insulating regime is a consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii-Moriya interaction and occurs during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures provides a platform for proof-of-concept dissipationless spin-textured spintronic applications.

15.
Phys Rev Lett ; 127(12): 125901, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597081

RESUMO

In two-dimensional insulators with time-reversal (TR) symmetry, a nonzero local Berry curvature of low-energy massive Dirac fermions can give rise to nontrivial spin and charge responses, even though the integral of the Berry curvature over all occupied states is zero. In this Letter, we present a new effect induced by the electronic Berry curvature. By studying electron-phonon interactions in BaMnSb_{2}, a prototype two-dimensional Dirac material possessing two TR-related massive Dirac cones, we find that the nonzero local Berry curvature of electrons can induce a phonon angular momentum. The direction of this phonon angular momentum is locked to the phonon propagation direction, and thus we refer to it as "phonon helicity" in a way that is reminiscent of electron helicity in spin-orbit-coupled electronic systems. We discuss possible experimental probes of such phonon helicity.

16.
Acc Chem Res ; 52(4): 1016-1024, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30666870

RESUMO

Nucleic acids contain a variety of different base modifications, such as decoration at the fifth position of cytosine, which is one of the most important epigenetic modifications. Nucleic acid epigenetics mediate a wide variety of biological processes, including embryonic development and gene regulation, genomic imprinting, differentiation, and X-chromosome inactivation. Furthermore, the modification level can be aberrantly expressed in distinct sets of tissue that can indicate different tumor onsets and canceration. Thus, the analysis of modified nucleobases may contribute to the understanding of epigenetic modification-related biological processes and the correlation of modified nucleobase patterns with disease states for clinical diagnosis and treatment. In addition to 5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine are found in organisms at a low content but are nevertheless extremely important chemical modifications, and 5-hydroxyuracil and 5-formyluracil compounds are also present. 5-Formyluracil is found in bacteriophages, prokaryotes, and mammalian cells. The 5-formyluracil content is higher in certain cancer tissues than in the normal tissues adjacent to the tumor. The content of 5-formyluracil in different cell tissues may have cell type specificity. With the continuous use of chemical tools, new detection technologies have greatly advanced the research on natural pyrimidine modifications. These modifications dynamically regulate the gene expression in eukaryotes and prokaryotes and provide mechanistic insights into the occurrence of diseases. Natural pyrimidine modifications act not only as intermediates for DNA demethylation or oxidative damage products but also as modulators of gene expression. Therefore, the development of more effective chemical tools will help us better understand the dynamic changes of natural pyrimidine modifications in vivo. In this Account, we summarize the recent advanced techniques for the detection of 5-formylpyrimidine (5-formylcytosine and 5-formyluracil) and highlight their great potential as biomarkers in biomedical applications. Focusing on the great urgency for the detection of epigenetic modifications, our group developed a series of methods for the qualitative and quantitative analysis of 5-formylpyrimidine in the past few years, aiming at facilitating the accurate detection and mapping of these epigenetic modifications. By the construction of probes, 5-formylpyrimidine can be selectively labeled. Using mass spectrometry, the epigenetic modifications can be quantified. Upon treatment under specific conditions, 5-formylcytosine can be recognized at single-base resolution. With this Account, we anticipate providing chemical and biological researchers with some insight to unlock the complex mechanism involved in 5-formylpyrimidine-related biological processes and stimulate more collaborative research interests from the different fields of materials, biological, medicine, and chemistry to promote the translational research of epigenetics in tumor diagnosis and treatment.


Assuntos
Citosina/análogos & derivados , Espectrometria de Massas , Uracila/análogos & derivados , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Citosina/análise , DNA/química , DNA/metabolismo , Corantes Fluorescentes/química , Humanos , Uracila/análise
17.
Phys Rev Lett ; 125(3): 036401, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745391

RESUMO

Gapless criteria that can efficiently determine whether a crystal is gapless or not are particularly useful for identifying topological semimetals. In this work, we propose a sufficient gapless criterion for three-dimensional noninteracting crystals, based on the simplified expressions for the bulk average value of the static axion field. The brief logic is that two different simplified expressions give the same value in an insulator, and thus the gapless phase can be detected by the mismatch of them. We demonstrate the effectiveness of the gapless criterion in the magnetic systems with space groups 26 and 13, where mirror, glide, and inversion symmetries provide the simplified expressions. In particular, the gapless criterion can identify gapless phases that are missed by the symmetry-representation approach, as illustrated by space group 26. Our proposal serves as a guiding principle for future discovery of topological semimetals.

18.
Nano Lett ; 19(5): 2945-2952, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30942075

RESUMO

Inducing magnetic orders in a topological insulator (TI) to break its time reversal symmetry has been predicted to reveal many exotic topological quantum phenomena. The manipulation of magnetic orders in a TI layer can play a key role in harnessing these quantum phenomena toward technological applications. Here we fabricated a thin magnetic TI film on an antiferromagnetic (AFM) insulator Cr2O3 layer and found that the magnetic moments of the magnetic TI layer and the surface spins of the Cr2O3 layers favor interfacial AFM coupling. Field cooling studies show a crossover from negative to positive exchange bias clarifying the competition between the interfacial AFM coupling energy and the Zeeman energy in the AFM insulator layer. The interfacial exchange coupling also enhances the Curie temperature of the magnetic TI layer. The unique interfacial AFM alignment in magnetic TI on AFM insulator heterostructures opens a new route toward manipulating the interplay between topological states and magnetic orders in spin-engineered heterostructures, facilitating the exploration of proof-of-concept TI-based spintronic and electronic devices with multifunctionality and low power consumption.

19.
Phys Rev Lett ; 122(18): 186802, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144871

RESUMO

We report magnetotransport studies of InAs/GaSb bilayer quantum wells in a regime where the interlayer tunneling between the electron and hole gases is suppressed. When the chemical potential is tuned close to the charge neutrality point, we observe anomalous quantum oscillations that are inversely periodic in magnetic field and that have an extremely high frequency despite the highly insulating regime where they are observed. The seemingly contradictory coexistence of a high sheet resistance and high frequency quantum oscillations in the charge neutrality regime cannot be understood within the single-particle picture. We propose an interpretation that attributes our experimental observation to the Coulomb drag between the electron and hole gases, thus providing strong evidence of the significance of Coulomb interaction in this topological insulator.

20.
Phys Rev Lett ; 123(15): 156801, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702286

RESUMO

We propose a realization of the lattice-symmetry-assisted second-order topological superconductors with corner Majorana zero modes (MZM) based on two-dimensional topological insulators (2DTI). The lattice symmetry can naturally lead to the anisotropic coupling of edge states along different directions to the in-plane magnetic field and conventional s-wave pairings, thus leading to a single MZM located at the corners for various lattice patterns. In particular, we focus on the 2DTI with D_{3d} lattice symmetry and found different types of gap opening for the edge states along the armchair and zigzag edges in a broad range of parameters. As a consequence, a single MZM exists at the corner between the zigzag and armchair edges, and is robust against weakly broken lattice symmetry. We propose to realize such corner MZMs in a variety of polygon patterns, such as triangles and quadrilaterals. We further show their potentials in building the Majorana network through constructing the Majorana Y junction under an in-plane magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA