Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 26580-26591, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029332

RESUMO

The precise modulation of nanosheet stacking modes introduces unforeseen properties and creates momentous applications but remains a challenge. Herein, we proposed a strategy using bipolar molecules as torque wrenches to control the stacking modes of 2-D Zr-1,3,5-(4-carboxylphenyl)-benzene metal-organic framework (2-D Zr-BTB MOF) nanosheets. The bipolar phenyl-alkanes, phenylmethane (P-C1) and phenyl ethane (P-C2), predominantly instigated the rotational stacking of Zr-BTB-P-C1 and Zr-BTB-P-C2, displaying a wide angular distribution. This included Zr-BTB-P-C1 orientations at 0, 12, 18, and 24° and Zr-BTB-P-C2 orientations at 0, 6, 12, 15, 24, and 30°. With reduced polarity, phenyl propane (P-C3) and phenyl pentane (P-C5) introduced steric hindrance and facilitated alkyl hydrophobic interactions with the nanosheets, primarily resulting in the modulation of eclipsed stacking for Zr-BTB-P-C3 (64.8%) and Zr-BTB-P-C5 (93.3%) nanosheets. The precise angle distributions of four Zr-BTB-P species were in agreement with theoretical calculations. The alkyl induction mechanism was confirmed by the sequential guest replacement and 2-D 13C-1H heteronuclear correlation (HETCOR). In addition, at the single-particle level, we first observed that rotational stacked pores exhibited similar desorption rates for xylene isomers, while eclipsed stacked pores showed significant discrepancy for xylenes. Moreover, the eclipsed nanosheets as stationary phases exhibited high resolution, selectivity, repeatability, and durability for isomer separation. The universality was proven by another series of bipolar acetate-alkanes. This bipolar molecular torque wrench strategy provides an opportunity to precisely control the stacking modes of porous nanosheets.

2.
Inorg Chem ; 60(23): 17440-17444, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34756021

RESUMO

Global warming associated with CO2 emission has led to frequent extreme weather events in recent years. Carbon capture using porous solid adsorbents is promising for addressing the greenhouse effect. Herein, we report a series of robust metal-organic cages (MOCs) featuring various functional groups, such as methyl and amine groups, for CO2/N2 separation. Significantly, the amine-group-functionalized MOC-QW-3-NH2 displays the best selective CO2 adsorption performance, as confirmed by single-component adsorption and transient breakthrough experiments. The distinct CO2 adsorption mechanism has been well studied via theoretical calculations, confirming that the amine groups play a vital role for efficiently selective CO2 adsorption resulting from hierarchical adsorbate-framework interaction.

3.
Angew Chem Int Ed Engl ; 60(13): 6920-6925, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33480119

RESUMO

The tuning of metal-organic framework (MOF) nanosheet stacking modes from molecular level was rarely explored although it significantly affected the properties and applications of nanosheets. Here, the different stacking modes of Zr-1, 3, 5-(4-carboxylphenyl)-benzene framework nanosheets were synthesized through the induction of different host-guest noncovalent interactions. The solvents of methyl benzene and ethyl acetate induced twisted stacking of nanosheets with the specific rotation angles of 12°, 18°, 24° and 6°, 18°, 24°, 30°, respectively, which was in agreement with theoretical calculations. Meanwhile, the alkanes were likely to vertically enter the pores of Zr-BTB nanosheets because of steric hindrance and hydrophobic interactions, resulting in the untwisted stacking of nanosheets. The untwisted ordered nanopores showed the excellent gas chromatographic separations of benzene derivative isomers, which was better than twisted nanosheets stacking and commercial columns. This work uncovers a rational strategy to control the stacking of two-dimensional MOF nanosheets.

4.
ACS Cent Sci ; 8(2): 184-191, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233451

RESUMO

Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.

5.
ACS Appl Mater Interfaces ; 14(40): 45444-45450, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178410

RESUMO

Adsorptive separation based on porous solid adsorbents has emerged as an excellent effective alternative to energy-intensive conventional separation methods in a low energy cost and high working capacity manner. However, there are few stable mesoporous metal-organic frameworks (MOFs) for efficient purification of methane from other light hydrocarbons in natural gas. Herein, we report a series of stable mesoporous MOFs, MIL-101-Cr/Fe/Fe-NH2, for efficient separation of CH4 and C3H8 from a ternary mixture CH4/C2H6/C3H8. Experimental results show that all three MOFs possess excellent thermal, acid/basic, and hydrothermal stability. Single-component adsorption suggested that they have high C3H8 adsorption capacity and commendable selectivity for C3H8 and C2H6 over CH4. Transient breakthrough experiments further certified the ability of direct separation of CH4 from simulated natural gas and indirect recovery of C3H8 from the packing column. Theoretical calculations illustrated that the van der Waals force proportional to the molecular weight is the key factor and that the structural integrity and defect can impact separation performances.

6.
Nat Commun ; 10(1): 2911, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266966

RESUMO

The stacking between nanosheets is an intriguing and inevitable phenomenon in the chemistry of nano-interfaces. Two-dimensional metal-organic framework nanosheets are an emerging type of nanosheets with ultrathin and porous features, which have high potential in separation applications. Here, the stacking between single-layer metal-organic framework nanosheets is revealed to show three representative conformations with tilted angles of 8°, 14°, and 30° for Zr-1, 3, 5-(4-carboxylphenyl)-benzene framework as an example. Efficient untwisted stacking strategy by simple heating is proposed. A detailed structural analysis of stacking modes reveals the creation of highly ordered sub-nanometer micropores in the interspacing of untwisted nano-layers, yielding a high-resolution separator for the pair of para-/meta-isomers over the twisted counterparts and commercial HP-5MS and VF-WAXMS columns. This general method is proven by additional nanosheet examples and supported by Grand Canonical Monte Carlo simulation. This finding will provide a synthetic route in the rational design of functionalities in two-dimensional metal-organic framework nanosheet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA