Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Anal Biochem ; 660: 114953, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243135

RESUMO

Human papillomaviruse type 16 (HPV16) is a high-risk serotype. As the main protective antigen protein, L1 protein is also the target protein for diagnosis. A simple label free electrochemical immunosensor (ECIS) was fabricated for ultrasensitive detection of HPV16 L1 protein in this work. Quasi-spherical Ag@Au core-shell nanoparticles on graphene oxide (Ag@AuNPs-GO) was developed as current response amplifier and characterized by UV-Vis Spectroscopy, Transmission Electron Microscopy and energy dispersive X-ray spectroscopy. Staphylococcal protein A was decorated on the modified electrode and utilized to immobilized the Fc portion of the monoclonal antibody specific for HPV16 L1 protein. Cyclic Voltammetry, Differential Pulse Voltammetry and Electrochemical Impedance Spectroscopy were used to verify the electrochemical performance and interfacial kinetic property. The increased concentration of HPV16 L1 protein led to slow electron transport and linearly decreased differential pulse voltammetry peak current with a detection limit of 0.002 ng mL-1 and a wide linear relationship in the range of 0.005-400 ng mL-1at a regression coefficient (R2) of 0.9948. Furthermore, this ECIS demonstrated acceptable accuracy with good reproducibility, stability and selectivity, suggesting a promising immunological strategy for HPV typing and early screening.


Assuntos
Alphapapillomavirus , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Humanos , Ouro/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Imunoensaio/métodos , Reprodutibilidade dos Testes , Grafite/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
2.
J Solid State Electrochem ; 27(2): 489-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36466035

RESUMO

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a grave threat to human life and health, it is essential to develop an efficient and sensitive detection method to identify infected individuals. This study described an electrode platform immunosensor to detect SARS-CoV-2-specific spike receptor-binding domain (RBD) protein based on a bare gold electrode modified with Ag-rGO nanocomposites and the biotin-streptavidin interaction system. The Ag-rGO nanocomposites was obtained by chemical synthesis and characterized by electrochemistry and scanning electron microscope (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to record the electrochemical signals in the electrode modification. The differential pulse voltammetry (DPV) results showed that the limit of detection (LOD) of the immunosensor was 7.2 fg mL-1 and the linear dynamic detection range was 0.015 ~ 158.5 pg mL-1. Furthermore, this sensitive immunosensor accurately detected RBD in artificial saliva with favorable stability, specificity, and reproducibility, indicating that it has the potential to be used as a practical method for the detection of SARS-CoV-2.

3.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682904

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the pathogenic agent leading to COVID-19. Due to high speed of transmission and mutation rates, universal diagnosis and appropriate prevention are still urgently needed. The nucleocapsid protein of SARS-CoV-2 is considered more conserved than spike proteins and is abundant during the virus' life cycle, making it suitable for diagnostic applications. Here, we designed and developed a fluorescent immunochromatography assay (FICA) for the rapid detection of SARS-CoV-2-specific antibodies using ZnCdSe/ZnS QDs-conjugated nucleocapsid (N) proteins as probes. The nucleocapsid protein was expressed in E.coli and purified via Ni-NTA affinity chromatography with considerable concentration (0.762 mg/mL) and a purity of more than 90%, which could bind to specific antibodies and the complex could be captured by Staphylococcal protein A (SPA) with fluorescence displayed. After the optimization of coupling and detecting conditions, the limit of detection was determined to be 1:1.024 × 105 with an IgG concentration of 48.84 ng/mL with good specificity shown to antibodies against other zoonotic coronaviruses and respiratory infection-related viruses (n = 5). The universal fluorescent immunochromatography assay simplified operation processes in one step, which could be used for the point of care detection of SARS-CoV-2-specific antibodies. Moreover, it was also considered as an efficient tool for the serological screening of potential susceptible animals and for monitoring the expansion of virus host ranges.


Assuntos
COVID-19 , Pontos Quânticos , Animais , Anticorpos Antivirais , COVID-19/diagnóstico , Cromatografia de Afinidade , Proteínas do Nucleocapsídeo , SARS-CoV-2 , Sensibilidade e Especificidade
4.
Angew Chem Int Ed Engl ; 61(31): e202203715, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35611598

RESUMO

Ubiquitous surface wrinkling has been well-studied theoretically and experimentally. How to modulate the stress state of a liquid-supported system for the unexploited wrinkling capabilities remains a challenge. Here we report a simple linearly-polarized-light illumination to spatiotemporally trigger ultrasensitive in situ dynamic wrinkling on a floating azo-film. The smart combination of the liquid substrate with photoresponsive azo-moieties leads to the light-induced ultrafast wrinkling evolution, accompanied by unprecedented sequential wrinkling orientation conversion (from polarization-parallel to polarization-perpendicular). The involved different polarization-dependent sequential photo-orientation for azo side chains and azo-grafted main chains of azopolymers is disclosed experimentally for the first time. Meanwhile, programmable dynamic wrinkling with all-optical switchable surface topographies is available, which has wide application potentials in photoresponsive soft photonics.

5.
Langmuir ; 36(11): 2837-2846, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32151133

RESUMO

Surface relief gratings (SRGs) with hierarchical microstructures are highly needed owing to their diverse applications in various fields. Here, we introduce surface-wrinkling templates as novel nonlithographic phase masks to direct the generation of hierarchical well-prescribed SRGs on nonconformally contacted azo-films by a simple single-beam illumination. The light-induced SRGs have controlled microstructures including single/double/triple wavelengths and single/double orientations as well as their organizations. These microstructures can be well tailored by the wavelength of the surface-wrinkling phase masks and the polarization direction of incident light relative to the wrinkling patterns in the phase masks. Interestingly, we find that the larger wavelength is induced prior to the smaller ones, offering another new strategy to tailor the microstructures of SRGs through simple manipulation of the illumination duration. In particular, path-guided SRGs with unprecedented well-organized hierarchical microstructures have been available in the case of controlled moving of the light illumination through the surface-wrinkling phase mask. As demonstrated, the obtained hierarchical SRGs with the capability of multiple optical inscription/erasure have great application potentials in fields such as confidential information (or pattern) records and encryption/decryption.

6.
J Biol Chem ; 293(31): 11996-12010, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29903906

RESUMO

Chronic neuroinflammation is a characteristic of Parkinson's disease (PD). Previous investigations have shown that Parkin gene mutations are related to the early-onset recessive form of PD and isolated juvenile-onset PD. Further, Parkin plays important roles in mitochondrial quality control and cytokine-induced cell death. However, whether Parkin regulates other cellular events is still largely unknown. In this study, we performed overexpression and knockout experiments and found that Parkin negatively regulates antiviral immune responses against RNA and DNA viruses. Mechanistically, we show that Parkin interacts with tumor necrosis factor receptor-associated factor 3 (TRAF3) to regulate stability of TRAF3 protein by promoting Lys48-linked ubiquitination. Our findings suggest that Parkin plays a novel role in innate immune signaling by targeting TRAF3 for degradation and maintaining the balance of innate antiviral immunity.


Assuntos
Fibroblastos/imunologia , Imunidade Inata , Transdução de Sinais/imunologia , Fator 3 Associado a Receptor de TNF/genética , Ubiquitina-Proteína Ligases/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/virologia , Chlorocebus aethiops , Fibroblastos/citologia , Fibroblastos/virologia , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Herpesvirus Humano 1/imunologia , Humanos , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Cultura Primária de Células , Proteólise , Vírus Sendai/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Transdução Genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação , Células Vero , Vesiculovirus/imunologia
7.
Int J Biol Macromol ; 279(Pt 4): 134852, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39159796

RESUMO

The African swine fever virus (ASFV), a highly contagious pathogen responsible for African swine fever (ASF), causes significant economic losses in the global pork industry. Due to its large and complex structure, ASFV remains refractory to commercial vaccine development, necessitating the creation of rapid, sensitive, and specific diagnostic tools for disease control. In this study, quantum dots were conjugated to ASFV p72 protein to establish a fluorescent immunochromatographic assay for detecting ASFV-specific antibodies. The assay test strips contained four adjacent pads arranged sequentially: a sample-application pad, a pad containing mobile antigen-probe conjugate, a nitrocellulose readout pad featuring a test line containing immobilised staphylococcal protein A and a control line containing immobilised monoclonal antibodies against the ASFV p72 protein, and an absorbent pad driving the directional flow of liquid via capillary action. The resulting fluorescence immunochromatographic assay demonstrated highly sensitive and specific ASFV antibody detection in under 15 min. Specificity testing showed no cross-reactivity with serum antibodies against other viruses and sensitivity surpassing that of commercial ASFV antibody colloidal gold immunochromatographic test strips. This novel approach offers rapid detection, excellent specificity, and high sensitivity, and supports the future development of fluorescent immunochromatographic test strips for ASFV antibody detection.


Assuntos
Vírus da Febre Suína Africana , Anticorpos Antivirais , Cromatografia de Afinidade , Vírus da Febre Suína Africana/imunologia , Animais , Cromatografia de Afinidade/métodos , Anticorpos Antivirais/imunologia , Suínos , Febre Suína Africana/diagnóstico , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Pontos Quânticos/química , Fluorescência , Proteínas Virais/imunologia , Imunoensaio/métodos
8.
J Virol Methods ; 324: 114874, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154579

RESUMO

BACKGROUND: Varicella zoster virus (VZV) is the pathogen of varicella and herpes zoster, it is necessary to develop a rapid, sensitive and specific detection method for the prevention and control of related diseases. METHODS: We inserted the gB protein extracellular region gene (gB-ex, 1-2208 bp) of VZV into lentivirus vector, and then obtained the recombinant gB protein through mammalian expression system. BALB/c mice were immunized multiple times with purified gB protein as immunogen. Then four strains of high affinity monoclonal antibodies targeting gB protein were prepared by cell fusion technique. Monoclonal antibodies 5G4 and HRP-4E9 were selected as capture and detection antibodies respectively, and a double-antibody sandwich ELISA method was established for detection. RESULTS: The detection limit of the DAS-ELISA was 156 PFU/mL, and there was no cross-reaction with Herpes simplex virus-1/Herpes simplex virus-2/Pseudorabies virus. The coefficients of variation of intra-assay and inter-assay repeatability were less than 5%. CONCLUSIONS: In this study, a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was established for the detection of VZV. The assay has good sensitivity, specificity and repeatability, which provides strong technical support and product guarantee for the rapid clinical detection of VZV.


Assuntos
Herpes Zoster , Herpesvirus Humano 3 , Animais , Camundongos , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Monoclonais , Simplexvirus , Proteínas Recombinantes , Mamíferos
9.
J Virol Methods ; 324: 114855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013021

RESUMO

The L1 protein of Human papillomavirus (HPV), the main capsid protein, induces the formation of neutralizing antibodies. In this study, HPV52 L1 protein was induced to be expressed. Monoclonal antibody (mAb) 6A7 against L1 protein were screened by cell fusion techniques. Western Blot and immunofluorescence assay (IFA) demonstrated the specificity of the mAb. The L1 protein was truncated for prokaryotic expression (N1∼N7) and Dot-ELISA showed that 6A7 recognized N3 (aa 200-350). The immunodominant regions were truncated again for expression, with 6A7 recognizing N6 (aa 251-305). The N6 proteins were further truncated and then were constructed an four-segment eukaryotic expression vector. IFA showed that 6A7 could recognize amino acid 262-279. Amino acid 262-279 was selected to be truncated into short peptides P1 and P2. Finally, Peptide-ELISA and Dot-ELISA showed that the epitope regions of mAb 6A7 were amino acid 262-273. The mAbs with defined epitopes can lay the foundation for the analysis of antigenic epitope characteristics and promote the development of epitope peptide vaccines.


Assuntos
Proteínas do Capsídeo , Epitopos de Linfócito B , Humanos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/química , Anticorpos Monoclonais , Papillomaviridae , Aminoácidos , Anticorpos Antivirais , Mapeamento de Epitopos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38502862

RESUMO

Lomefloxacin (LMF), a third-generation fluoroquinolone antibacterial agent, is often used to treat bacterial and mycoplasma infections. However, due to its prolonged half-life and slow metabolism, it is prone to residues in animal-derived foods, posing a potential food safety risk. Therefore, it is particularly urgent and important to establish a method for detecting lomefloxacin. In this study, direct and indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) based on quantum dots (QDs) was established for the detection of LMF. As for dc-FLISA, the half-maximal inhibitory concentration (IC50) and limit of detection (LOD) were 0.84 ng/mL, 0.04 ng/mL, respectively, the detection ranges from 0.08 to 9.11 ng/mL. The IC50 and LOD of ic-FLISA were 0.43 ng/mL and 0.03 ng/mL, respectively, meanwhile the detection ranges from 0.05 to 3.49 ng/mL. The recoveries of dc-FLISA and ic-FLISA in animal-derived foods (milk, fish, chicken, and honey), ranged from 95.8% to 105.2% and from 96.3% to 103.4%, respectively, with the coefficients of variation less than 8%. These results suggest that the dc-FLISA and ic-FLISA methods, which are based on QD labelling, are highly sensitive and cost-effective, and can be effectively used to detect LMF in animal-derived foods.


Assuntos
Galinhas , Fluoroquinolonas , Contaminação de Alimentos , Leite , Pontos Quânticos , Pontos Quânticos/química , Animais , Contaminação de Alimentos/análise , Fluoroquinolonas/análise , Leite/química , Mel/análise , Fluorescência , Antibacterianos/análise , Ensaio de Imunoadsorção Enzimática , Análise de Alimentos
11.
Chem Sci ; 15(5): 1692-1699, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303953

RESUMO

On account of the scarcity of molecules with a satisfactory second near-infrared (NIR-II) response, the design of high-performance organic NIR photothermal materials has been limited. Herein, we investigate a cocrystal incorporating tetrathiafulvalene (TTF) and tetrachloroperylene dianhydride (TCPDA) components. A stable radical was generated through charge transfer from TTF to TCPDA, which exhibits strong and wide-ranging NIR-II absorption. The metal-free TTF-TCPDA cocrystal in this research shows high photothermal conversion capability under 1064 nm laser irradiation and clear photothermal imaging. The remarkable conversion ability-which is a result of twisted components in the cocrystal-has been demonstrated by analyses of single crystal X-ray diffraction, photoluminescence and femtosecond transient absorption spectroscopy as well as theoretical calculations. We have discovered that space charge separation and the ordered lattice in the TTF-TCPDA cocrystal suppress the radiative decay, while simultaneously strong intermolecular charge transfer enhances the non-radiative decay. The twisted TCPDA component induces rapid charge recombination, while the distorted configuration in TTF-TCPDA favors an internal non-radiative pathway. This research has provided a comprehensive understanding of the photothermal conversion mechanism and opened a new way for the design of advanced organic NIR-II photothermal materials.

12.
Int J Biol Macromol ; : 136747, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39433186

RESUMO

African Swine Fever Virus (ASFV), a highly contagious DNA virus, causes severe economic losses to the global swine industry. The ASFV p15 protein, which is found in the core shell, is essential to the assembly of viral particles. In addition, protein p15 is a candidate target for the development of diagnostic reagents for African Swine Fever (ASF) because of its excellent immunogenicity. In this research, we prepared the p15 protein using eukaryotic expression system and validated it with sera from ASFV-infected pigs. The p15 protein could be well identified by the sera from ASFV-infected pigs, suggesting that some linear epitopes are located in the p15 protein. Furthermore, we successfully prepared two lgG1 subclass monoclonal antibodies (1E6-A7 and 3D7C9) specific against p15 using hybridoma technology. Using the peptide scanning method, we discovered the two mAbs well recognized the same linear epitope23LEIINNLCML32. The23LEIINNLCML32 epitope in the ASFV p15 N-terminus was identified and characterized for the first time, and it reacted well with the ASFV-positive serum, implying that it was a natural B cell linear epitope. These findings may help in the development of novel serologic diagnosis tools and the improvement of antiviral drug designs for ASF.

13.
Food Chem ; 461: 140009, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39167943

RESUMO

A label-free electrochemical immunosensor was developed to rapidly detect tilmicosin (TMC) residues in pork and milk. The immunosensor was constructed by immobilizing a high-affinity monoclonal antibody against TMC on an rGO-PEI-Ag nanocomposite-modified electrode. The rGO-PEI-Ag nanocomposites were prepared by mixing polyethyleneimine (PEI) modified reduced graphene oxide (rGO) with AgNO3 solution. The prepared rGO-PEI-Ag nanocomposites showed good redox activity and conductivity, as characterized by ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), and X-ray diffraction (XRD). During the preparation process, staphylococcal protein A (SPA) was added to targetedly bind the Fc segment of the monoclonal antibody. The immunosensor showed a low detection limit (LOD) of 0.0013 ng/mL, a linear range of 0.01-100 ng/mL, and recoveries ranging from 92.77 to 100.02% in pork and 92.26-101.23% in milk. Furthermore, the immunosensor exhibited good stability, reproducibility, and specificity in detecting TMC in pork and milk real samples.


Assuntos
Técnicas Eletroquímicas , Contaminação de Alimentos , Grafite , Limite de Detecção , Leite , Nanocompostos , Prata , Tilosina , Grafite/química , Nanocompostos/química , Animais , Leite/química , Prata/química , Contaminação de Alimentos/análise , Suínos , Tilosina/análogos & derivados , Tilosina/análise , Tilosina/química , Polietilenoimina/química , Imunoensaio/métodos , Imunoensaio/instrumentação , Técnicas Biossensoriais , Antibacterianos/análise , Antibacterianos/química
14.
Front Microbiol ; 15: 1399123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765685

RESUMO

Introduction: Pseudorabies (PR) is a multi-animal comorbid disease caused by pseudorabies virus (PRV), which are naturally found in pigs. At the end of 2011, the emergence of PRV variant strains in many provinces in China had caused huge economic losses to pig farms. Rapid detection diagnosis of pigs infected with the PRV variant helps prevent outbreaks of PR. The immunochromatography test strip with colloidal gold nanoparticles is often used in clinical testing due to its low cost and high throughput. Methods: This study was designed to produce monoclonal antibodies targeting PRV through immunization of mice using the eukaryotic system to express the gE glycoprotein. Subsequently, paired monoclonal antibodies were screened based on their sensitivity and specificity for use in the preparation of test strips. Results and discussion: The strip prepared in this study was highly specific, only PRV was detected, and there was no cross-reactivity with glycoprotein gB, glycoprotein gC, glycoprotein gD, and glycoprotein gE of herpes simplex virus and varicellazoster virus, porcine epidemic diarrhea virus, Senecavirus A, classical swine fever virus, porcine reproductive and respiratory syndrome virus, and porcine parvovirus. Moreover, it demonstrated high sensitivity with a detection limit of 1.336 × 103 copies/µL (the number of viral genome copies per microliter); the coincidence rate with the RT-PCR detection method was 96.4%. The strip developed by our laboratory provides an effective method for monitoring PRV infection and controlling of PR vaccine quality.

15.
Bioelectrochemistry ; 153: 108489, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37354640

RESUMO

Virginiamycin (VIR), a feed additive, is used to promote pig and poultry growth. However, it is hazardous to human health. This work described a label-free electrochemical immunosensor based on silver nanoparticles-reduced graphene oxide (AgNPs-rGO) nanocomposites and staphylococcal protein A (SPA) for the first time to directly detect the residual marker VIR M1. Good catalytic currents for oxygen reduction reaction were apparently obtained after the modification of nanocomposites on gold electrode. Nanocomposites were characterized using UV-Vis, X-ray diffraction (XRD) patterns, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). SPA was targeted to immobilize VIR M1 monoclonal antibody (mAb) by binding to Fc region of antibody. The proposed immunosensor showed a wide linear range from 0.25 ng mL-1 to 100 ng mL-1, providing detection limit (LOD) of 0.18 ng mL-1 of VIR M1. Recovery rates ranged from 92.27% to 98.84%, and relative standard deviation (RSD) was not above 6.6%, indicating the immunosensor could detect VIR M1 in actual samples with high accuracy. The sensor showed good selectivity, reproducibility and stability and could be considered as a potential tool for detection of VIR M1 in feed and animal derived food.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Animais , Humanos , Suínos , Técnicas Eletroquímicas/métodos , Proteína Estafilocócica A , Estreptogramina A , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Imunoensaio/métodos , Prata , Grafite/química , Nanocompostos/química , Ouro/química , Anticorpos , Limite de Detecção
16.
Front Microbiol ; 14: 1308753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282734

RESUMO

African swine fever (ASF) is a viral disease caused by the African swine fever virus that can be highly transmitted and lethal in domestic pigs. In the absence of a vaccine, effective diagnosis is critical for minimizing the virus's spread. In recent years, with the decline of African swine fever virus (ASFV) virulence, antibody detection has become an important means of detection. ASFV nucleocapsid protein p34 is a mature hydrolytic product of pp220, which is highly conserved and has a high content in the structural protein of the virus. Prokaryotic cells were chosen to generate highly active and high-yield p34 protein, which was then used as an antigen for producing mouse monoclonal antibodies. The B-cell epitope 202QKELDKLQT210, which was highly conserved and found on the surface of the p34 protein, was first identified by an anti-p34 monoclonal antibody utilizing the peptide scanning technique and visualized in helix. This supported the viability of p34 protein detection even further. In addition, we established an indirect ELISA assay based on p34 to detect ASFV antibodies. The coincidence rate of this method with commercially available kits was shown to be 97.83%. Sensitivity analysis revealed that it could be detected in serum dilution as low as 1:6400, and there was no cross-reaction with other prevalent porcine epidemic diseases classical swine fever virus (CSFV), foot-and-mouth disease virus (FMDV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine circovirus 2 (PCV2). In summary, the established ELISA method and anti-P34 monoclonal antibody have demonstrated that the p34 protein has a promising application prospect for the detection of African swine fever antibodies.

17.
Front Cell Dev Biol ; 10: 877039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433693

RESUMO

NF-κB signaling is a pivotal regulator of the inflammatory response and it must be tightly controlled to avoid an excessive inflammatory response that may lead to human chronic inflammatory and autoimmune diseases. Thus, how NF-κB signaling is precisely controlled is a long-standing question in the field. TRAF family proteins function as key adaptors to mediate NF-κB signaling induced by various receptors. Here, we characterize KIZ/GM114 as a negative regulator balancing the NF-κB signaling. Mechanistically, KIZ/GM114 binds TRAF6/2 by targeting the TRAF domains to antagonize the TRAF6-IRAK1 association or the TRAF2-TRADD association, consequently reducing the IL-1ß/LPS/TNFα-induced NF-κB activation. Importantly, upon dextran sulfate sodium treatment, Gm114 deficiency induces a stronger inflammatory response, more severe acute colitis and lower survival rate in mice compared with control mice. Collectively, our study not only identifies KIZ/GM114 as a negative regulator to balance the NF-κB signaling, but it also implies a new strategy for limiting excessive inflammatory response.

18.
Materials (Basel) ; 14(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067132

RESUMO

In this paper, effective separation of oil from both immiscible oil-water mixtures and oil-in-water (O/W) emulsions are achieved by using poly(dimethylsiloxane)-based (PDMS-based) composite sponges. A modified hard template method using citric acid monohydrate as the hard template and dissolving it in ethanol is proposed to prepare PDMS sponge composited with carbon nanotubes (CNTs) both in the matrix and the surface. The introduction of CNTs endows the composite sponge with enhanced comprehensive properties including hydrophobicity, absorption capacity, and mechanical strength than the pure PDMS. We demonstrate the successful application of CNT-PDMS composite in efficient removal of oil from immiscible oil-water mixtures within not only a bath absorption, but also continuous separation for both static and turbulent flow conditions. This notable characteristic of the CNT-PDMS sponge enables it as a potential candidate for large-scale industrial oil-water separation. Furthermore, a polydopamine (PDA) modified CNT-PDMS is developed here, which firstly realizes the separation of O/W emulsion without continuous squeezing of the sponge. The combined superhydrophilic and superoleophilic property of PDA/CNT-PDMS is assumed to be critical in the spontaneously demulsification process.

19.
Front Cell Dev Biol ; 9: 761639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604244

RESUMO

[This corrects the article DOI: 10.3389/fcell.2021.710967.].

20.
Front Cell Dev Biol ; 9: 710967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490261

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a RING domain ubiquitin ligase that plays an important role in nuclear factor-κB (NF-κB) signaling by regulating activation of the TAK1 and IKK complexes. However, the molecular mechanisms that regulate TRAF6 E3 activity remain unclear. Here, we found that ZDHHC11, a member of the DHHC palmitoyl transferase family, functions as a positive modulator in NF-κB signaling. ZDHHC11 overexpression activated NF-κB, whereas ZDHHC11 deficiency impaired NF-κB activity stimulated by IL-1ß, LPS, and DNA virus infection. Furthermore, Zdhhc11 knockout mice had a lower level of serum IL6 upon treatment with LPS and D-galactosamine or HSV-1 infection than control mice. Mechanistically, ZDHHC11 interacted with TRAF6 and then enhanced TRAF6 oligomerization, which increased E3 activity of TRAF6 for synthesis of K63-linked ubiquitination chains. Collectively, our study indicates that ZDHHC11 positively regulates NF-κB signaling by promoting TRAF6 oligomerization and ligase activity, subsequently activating TAK1 and IKK complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA