Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1163-D1179, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889038

RESUMO

Patient-derived gene expression signatures induced by cancer treatment, obtained from paired pre- and post-treatment clinical transcriptomes, can help reveal drug mechanisms of action (MOAs) in cancer patients and understand the molecular response mechanism of tumor sensitivity or resistance. Their integration and reuse may bring new insights. Paired pre- and post-treatment clinical transcriptomic data are rapidly accumulating. However, a lack of systematic collection makes data access, integration, and reuse challenging. We therefore present the Cancer Drug-induced gene expression Signature DataBase (CDS-DB). CDS-DB has collected 78 patient-derived, paired pre- and post-treatment transcriptomic source datasets with uniformly reprocessed expression profiles and manually curated metadata such as drug administration dosage, sampling time and location, and intrinsic drug response status. From these source datasets, 2012 patient-level gene perturbation signatures were obtained, covering 85 therapeutic regimens, 39 cancer subtypes and 3628 patient samples. Besides data browsing, download and search, CDS-DB also supports single signature analysis (including differential gene expression, functional enrichment, tumor microenvironment and correlation analyses), signature comparative analysis and signature connectivity analysis. This provides insights into drug MOA and its heterogeneity in patients, drug resistance mechanisms, drug repositioning and drug (combination) discovery, etc. CDS-DB is available at http://cdsdb.ncpsb.org.cn/.


Assuntos
Antineoplásicos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Neoplasias , Humanos , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transcriptoma/genética , Microambiente Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética
2.
Small ; 20(8): e2306656, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817351

RESUMO

Herein, carbon dot (CD)-supported Fe single-atom nanozymes with high content of pyrrolic N and ultrasmall size (ph-CDs-Fe SAzyme) are fabricated by a phenanthroline-mediated ligand-assisted strategy. Compared with phenanthroline-free nanozymes (CDs-Fe SAzyme), ph-CDs-Fe SAzyme exhibit higher peroxidase (POD)-like activity due to their structure similar to that of ferriporphyrin in natural POD. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analyses show that metal Fe is dispersed in ph-CDs-Fe SAzyme as single atoms. Steady-state kinetic studies show that the maximum velocity (Vmax ) and turnover number (kcat ) of H2 O2  homolytic cleavage catalyzed by ph-CDs-Fe SAzyme are 3.0 and 6.2 more than those of the reaction catalyzed by CDs-Fe SAzyme. Density functional theory (DFT) calculations show that the energy barrier of the reaction catalyzed by ph-CDs-Fe SAzyme is lower than that catalyzed by CDs-Fe SAzyme. Antitumor efficacy experiments show that ph-CDs-Fe SAzyme can efficiently inhibit the growth of tumor cells both in vitro and in vivo by synergistic chemodynamic and photothermal effects. Here a new paradigm is provided for the development of efficient antitumor therapeutic approaches based on SAzyme with POD-like activity.


Assuntos
Carbono , Hemina , Cinética , Pirróis , Espectroscopia por Absorção de Raios X
3.
Insect Mol Biol ; 32(2): 200-212, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36522831

RESUMO

The gastrointestinal tract of all animals, including insects, is colonized by a remarkable array of microorganisms which are referred to collectively as the gut microbiota. The hosts establish mutually beneficial interactions with the gut microbiota. However, the mechanisms shaping these interactions remain to be better understood. Here, we investigated the roles of Musca domestica peptidoglycan recognition protein SC (MdPGRP-SC), a secreted pattern recognition receptor, in shaping the gut microbial community structure by using biochemical and high-throughput sequencing approaches. The recombinant MdPGRP-SC (rMdPGRP-SC) could strongly bind various pathogen-associated molecular patterns (PAMPs) including peptidoglycan, lipopolysaccharide and D-galactose, and exhibited mild affinity to ß-1, 3-glucan and D-mannose. Meanwhile, rMdPGRP-SC could also bind different kinds of microorganisms, including gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and yeast (Pichia pastoris). rMdPGRP-SC also exhibited weak antibacterial activity against Bacillus subtilis. Knockdown of MdPGRP-SC by RNAi reduced the persistence of ingested E. coli and a load of indigenous microbiota in the larval gut significantly. In addition, depleted MdPGRP-SC also altered the gut microbiota composition and led to increased ratios of Gram-negative bacteria. We hypothesize that MdPGRP-SC is involved in maintaining gut homeostasis by modulating the immune intensity of the gut through multiple mechanisms, including degrading or neutralizing various PAMPs and selectively suppressing the growth of some bacteria. Considering the functional conservation of the peptidoglycan recognition protein (PGRP) family in insects, the catalytic PGRPs might be promising candidate targets not only for pest and vector control but also for the treatment of bacterial infection in insect farming.


Assuntos
Microbioma Gastrointestinal , Moscas Domésticas , Animais , Moscas Domésticas/metabolismo , Escherichia coli , Moléculas com Motivos Associados a Patógenos , Peptidoglicano/metabolismo , Imunidade Inata
4.
Crit Rev Food Sci Nutr ; 63(22): 5841-5855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35014569

RESUMO

Fermented foods are important parts of traditional food culture with a long history worldwide. Abundant nutritional materials and open fermentation contribute to the diversity of microorganisms, resulting in unique product quality and flavor. Lactic acid bacteria (LAB), as important part of traditional fermented foods, play a decisive role in the quality and safety of fermented foods. Reproduction and metabolic of microorganisms drive the food fermentation, and microbial interaction plays a major role in the fermentation process. Nowadays, LAB have attracted considerable interest due to their potentialities to add functional properties to certain foods or as supplements along with the research of gut microbiome. This review focuses on the characteristics of diversity and variability of LAB in traditional fermented foods, and describes the principal mechanisms involved in the flavor formation dominated by LAB. Moreover, microbial interactions and their mechanisms in fermented foods are presented. They provide a theoretical basis for exploiting LAB in fermented foods and improving the quality of traditional fermented foods. The traditional fermented food industry should face the challenge of equipment automation, green manufacturing, and quality control and safety in the production.


Assuntos
Alimentos Fermentados , Lactobacillales , Lactobacillales/metabolismo , Alimentos Fermentados/microbiologia , Alimentos , Fermentação , Microbiologia de Alimentos
5.
Yi Chuan ; 45(7): 580-592, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503582

RESUMO

Tumors are serious threats to human health. The transcription factors are regarded as the potential targets for tumor treatment. As an important family of transcription factors, E2F family transcription factors (E2Fs) play vital roles in cell proliferation and regulation. However, the expression feature, gene functions, and molecular interactions of E2Fs in tumorigenesis are not clear. In this study, the transcriptome data, mutation data, and protein-protein interaction data of 10 high-incidence tumors in China from the TCGA database were integrated and analyzed to explore the expression, structure, function, mutation, and phylogenetic characteristics of E2Fs. The results showed that E2F1 and E2F7 were regularly upregulated in the tumor samples. Moreover, E2Fs participated in the regulation of the cell cycle, cell aging, and other signaling pathways. As an important regulator, E2F1 interacted with more proteins than other E2Fs. At the same time, the genetic mutation types of E2Fs varied in tumor type and patient sex, of which gene amplification accounts for the largest proportion. Phylogenetic analysis showed that E2Fs were conserved in 41 species, including fruit flies, nematodes, and humans. Meanwhile, E2Fs had a tendency for gene expansion during evolution. In conclusion, this study clarified the expression pattern, mutation characteristics, and evolutionary trend of E2Fs in high-incidence tumors in China, and suggested that E2F family transcription factors could be novel diagnostic markers for tumor diseases. Furthermore, this work can provide a theoretical basis for the development of anti-tumor-targeted drugs.


Assuntos
Carcinogênese , Fatores de Transcrição , Humanos , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Filogenia , Fatores de Transcrição/genética , Ciclo Celular , Carcinogênese/genética
6.
Food Microbiol ; 102: 103925, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809951

RESUMO

Antibacterial activity against Escherichia coli O157:H7 and Staphylococcus aureus of five typical plant-derived compounds [gallic acid (G.A), citral (Cit), thymol (Thy), salicylic acid (S.A), lauric acid (L.A)] were investigated by determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI). The results showed that only a combination of Thy and G.A (TGA), with a concentration of 0.1 and 1.25 mg/mL, respectively, had a synergistic effect (FICI = 0.5) on both E. coli O157:H7 and S. aureus. The amount of Thy and G.A in mixture were four-fold lower than the MICs of the individuals shown to cause the equivalent antimicrobial activity in trypticase soy broth (TSB). The microbial reduction obtained in TSB with addition of TGA were significantly higher (P < 0.05) than the reduction shown for the broth supplemented with the separated phenolics. TGA caused the changes of morphology and membrane integrity of bacteria. Additionally, the application of TGA on fresh-cut tomatoes are investigated. Fresh-cut tomatoes inoculated with E. coli O157:H7and S. aureus were washed for 2min, 5min, 10min at 4 °C, 25 °C, 40 °C in 0.3% NaOCl, or water containing TGA at various concentrations. Overall, the reduction of TGA achieved against S. aureus is higher than E. coli O157:H7. Same concentrations of combined antimicrobials at a temperature of 40 °C further increased the degree of microbial inactivation, with an additional 0.89-1.51 log CFU/g reduction compared to that at 25 °C. Moreover, 1/2MICThy+1/2MICG.A at 25 °C for 10min or 40 °C for 5min were generally acceptable with sensorial scores higher than 7. Our results showed that TGA could work synergistically on the inactivation of the tested bacteria and may be used as an alternative disinfectant of fresh produce.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Ácido Gálico , Solanum lycopersicum , Staphylococcus aureus , Timol , Anti-Infecciosos/farmacologia , Contagem de Colônia Microbiana , Escherichia coli O157/efeitos dos fármacos , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Ácido Gálico/farmacologia , Solanum lycopersicum/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Timol/farmacologia
7.
Ecotoxicol Environ Saf ; 241: 113788, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738103

RESUMO

The beneficial roles of resveratrol (RES) in affecting proliferation of multiple cancer cells have attracted intensive attention. However, the underlying mechanism remains unclear. This study aims to bridge the knowledge gap by investigating RES-induced growth inhibition of HeLa cells. Our work focuses on the metergasis of mitochondria in the RES-exposed cells. Therefore, HeLa cells were treated with different concentrations of RES for 30 min and 24 h, respectively. As a result, concentration-dependent increases in cell growth inhibition, ROS (reactive oxygen species) triggering, and LC3-II (light chain 3-II) expression were detected in the HeLa cells exposed to RES for 24 h. Interestingly, a specific concentration-dependent effect was observed in the HeLa cells exposed to RES for 30 min, that is, low concentration RES (≤ 25 µmol/L) reduced ROS levels, inhibited transcription and expression levels of LC3-II, and stimulated mitochondrial respiratory capacities. In contrast, high concentration RES (50 and 100 µmol/L) induced ROS over-production and autophagy in the cells, resulting in decreased levels of mitochondrial membrane potential, mitochondrial DNA copy numbers, and mitochondrial respiratory capacities. Together, our data concluded that RES inhibited HeLa cell proliferation through perturbation of mitochondrial structure and function, and ROS-induced autophagy also played a critical role in the process.


Assuntos
Apoptose , Mitocôndrias , Autofagia , Proliferação de Células , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia
8.
Nano Lett ; 21(8): 3573-3580, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33830773

RESUMO

The exploitation of strong light-matter interactions in chiral plasmonic nanocavities may enable exceptional physical phenomena and lead to potential applications in nanophotonics, information communication, etc. Therefore, a deep understanding of strong light-matter interactions in chiral plasmonic-excitonic (plexcitonic) systems constructed by a chiral plasmonic nanocavity and molecular excitons is urgently needed. Herein, we systematically studied the strong light-matter interactions in gold nanorod-based chiral plexcitonic systems assembled on DNA origami. Rabi splitting and anticrossing behavior were observed in circular dichroism spectra, manifesting chiroptical characteristic hybridization. The bisignate line shape of the circular dichroism (CD) signal allows the accurate discrimination of hybrid modes. A large Rabi splitting of ∼205/∼199 meV for left-handed/right-handed plexcitonic nanosystems meets the criterion of strong coupling. Our work deepens the understanding of light-matter interactions in chiral plexcitonic nanosystems and will facilitate the development of chiral quantum optics and chiroptical devices.


Assuntos
Nanopartículas Metálicas , Nanotubos , DNA , Ouro , Fenômenos Físicos
9.
J Sci Food Agric ; 102(10): 4304-4312, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35043419

RESUMO

BACKGROUND: Sacha inchi (Plukenetia volubilis L.) tea has been used as an adjuvant treatment for diabetes in Pu'er, in the Yunnan province of China. The effects of sacha inchi tea on diabetes and the underlying mechanisms remain unknown. This study was conducted to investigate the influence of a water extract of sacha inchi (P. volubilis L.) leaves (PWE) on hypoglycemic activity and gut microbiota composition in mice with streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM). During the 6 weeks of the study, T1DM mice were administered PWE intragastrically at 400 mg kg-1 body weight (BW) per day. RESULTS: Treatment with PWE reduced excessive loss of BW and excessive intake of food. It significantly decreased blood glucose levels and improved oral glucose tolerance. The treatment caused protective histopathological transformations in sections of the pancreas, leading to decreased insulin resistance and improved insulin sensitivity. Treatment with PWE also significantly ameliorated disorders of the gut microbiota structure and increased the richness and diversity of intestinal microbial species in T1DM mice. At the genus level, the populations of several crucial bacteria, such as Akkermansia, Parabacteroides, and Muribaculum increased in the PWE treatment group but the abundance of Ruminiclostridium and Oscillibacter decreased. CONCLUSIONS: Treatment with PWE can ameliorate hyperglycemic symptoms in STZ-induced T1DM mice, and the anti-diabetic effect of PWE was related to the amelioration of gut microbial structural disorder and the enrichment of functional bacteria. © 2022 Society of Chemical Industry.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Euphorbiaceae , Microbioma Gastrointestinal , Animais , China , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Euphorbiaceae/química , Camundongos , Extratos Vegetais , Óleos de Plantas/química , Estreptozocina , Chá
10.
Angew Chem Int Ed Engl ; 61(22): e202114706, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35301778

RESUMO

Here, we describe a DNA circuit-aided, origami nanodevice-based plasmonic system, which performs DNA-regulated, cascade amplification of faint chemical/biological signals. In this system, two gold-nanorods (GNRs) are co-assembled onto a DNA lock-containing, tweezer-like DNA origami template. Logic circuits serve as recognition and amplification elements for specific messengers, producing DNA keys for driving conformational changes of the plasmonic nanodevices. In the presence of input signals including nucleic acids, adenosines, chiral tyrosinamides or specific receptors expressed by tumor cells, the plasmonic nanodevices can be activated to perform dynamic structural motions, reporting robust responses via plasmonic circular dichroism (CD) spectral changes. This DNA nanodevice-based system provides a different design to enrich the strategies for constructing synthetic nanomachines, enabling the customized bottom-up nanostructure construction for sensitive biological signaling.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanotubos , Dicroísmo Circular , DNA/química , Ouro/química , Nanoestruturas/química , Nanotubos/química
11.
J Biol Chem ; 295(30): 10468-10477, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32532819

RESUMO

The single von Willebrand factor C-domain proteins (SVWCs) are mainly found in arthropods. Their expression may be regulated by several environmental stresses, including nutritional status and bacterial and viral infections. However, the underlying regulatory mechanism is unclear. In the present study, we identified a member of the SVWC family from the river prawn Macrobrachium nipponense as a soluble and bacteria-inducible pattern-recognition receptor (designated MnSVWC). In vitro, recombinant MnSVWC exhibited pronounced binding and Ca2+-dependent agglutinating abilities against diverse microbes, including Gram-negative bacteria (i.e. Escherichia coli and Aeromonas victoria), Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), and yeast (Pichia pastoris). ELISA assays revealed that recombinant MnSVWC recognizes a broad range of various pathogen-associated molecular patterns (PAMPs) and has high affinity to lipopolysaccharide and lysine-type and diaminopimelic acid-type peptidylglycan and d-galactose and low affinity to d-mannan and ß-1,3-glucan. Mutant MnSVWCP57A with an impaired Glu-Pro-Asn (EPN) motif displayed reduced affinity to all these PAMPs to varying extent. Moreover, MnSVWC bound to the surface of hemocytes and promoted their phagocytic activity and clearance of invasive bacteria. RNAi-mediated MnSVWC knockdown in prawn reduced the ability to clear invading bacteria, but did not block the activities of the Toll pathway or the arthropod immune deficiency (IMD) pathway, or the expression of antimicrobial peptide genes. These results indicate that MnSVWC functions as an extracellular pattern-recognition receptor in M. nipponense that mediates cellular immune responses by recognizing PAMPs, agglutinating invasive microbes, and promoting phagocytosis in hemocytes.


Assuntos
Proteínas de Artrópodes , Hemócitos/imunologia , Palaemonidae , Fagocitose , Receptores de Reconhecimento de Padrão , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Bactérias/imunologia , Palaemonidae/genética , Palaemonidae/imunologia , Pichia/genética , Pichia/imunologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia
12.
J Am Chem Soc ; 143(47): 19893-19900, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783532

RESUMO

DNA origami technique provides a programmable way to construct nanostructures with arbitrary shapes. The dimension of assembled DNA origami, however, is usually limited by the length of the scaffold strand. Herein, we report a general strategy to efficiently organize multiple DNA origami tiles to form super-DNA origami using a flexible and covalent-bound branched DNA structure. In our design, the branched DNA structures (Bn: with a certain number of 2-6 branches) are synthesized by a copper-free click reaction. Equilateral triangular DNA origamis with different numbers of capture strands (Tn: T1, T2, and T3) are constructed as the coassembly tiles. After hybridization with the branched DNA structures, the super-DNA origami (up to 13 tiles) can be efficiently ordered in the predesigned patterns. Compared with traditional DNA junctions (Jn: J2-J6, as control groups) assembled by base pairing between several DNA strands, a higher yield and more compact structures are obtained using our strategy. The highly ordered and discrete DNA origamis can further precisely organize gold nanoparticles into different patterns. This rationally developed DNA origami ordering strategy based on the flexible and covalent-bound branched DNA structure presents a new avenue for the construction of sophisticated DNA architectures with larger molecular weights.


Assuntos
DNA/química , Reagentes de Ligações Cruzadas/química , Ouro/química , Nanopartículas Metálicas/química , Nanosferas/química , Nanotubos/química , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Estudo de Prova de Conceito
13.
Angew Chem Int Ed Engl ; 60(5): 2594-2598, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089613

RESUMO

Using the DNA origami technique, we constructed a DNA nanodevice functionalized with small interfering RNA (siRNA) within its inner cavity and the chemotherapeutic drug doxorubicin (DOX), intercalated in the DNA duplexes. The incorporation of disulfide bonds allows the triggered mechanical opening and release of siRNA in response to intracellular glutathione (GSH) in tumors to knockdown genes key to cancer progression. Combining RNA interference and chemotherapy, the nanodevice induced potent cytotoxicity and tumor growth inhibition, without observable systematic toxicity. Given its autonomous behavior, exceptional designability, potent antitumor activity and marked biocompatibility, this DNA nanodevice represents a promising strategy for precise drug design for cancer therapy.


Assuntos
Terapia Combinada/métodos , DNA/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos
14.
Chembiochem ; 21(17): 2408-2418, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227615

RESUMO

Nanomaterials with enzyme-mimicking behavior (nanozymes) have attracted a lot of research interest recently. In comparison to natural enzymes, nanozymes hold many advantages, such as good stability, ease of production and surface functionalization. As the catalytic mechanism of nanozymes is gradually revealed, the application fields of nanozymes are also broadly explored. Beyond traditional colorimetric detection assays, nanozymes have been found to hold great potential in a variety of biomedical fields, such as tumor theranostics, antibacterial, antioxidation and bioorthogonal reactions. In this review, we summarize nanozymes consisting of different nanomaterials. In addition, we focus on the catalytic performance of nanozymes in biomedical applications. The prospects and challenges in the practical use of nanozymes are discussed at the end of this Minireview.


Assuntos
Pesquisa Biomédica , Nanoestruturas/química , Animais , Catálise , Colorimetria , Humanos
15.
Fish Shellfish Immunol ; 100: 272-282, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32142875

RESUMO

Fibrinogen-related proteins (FREPs) are widely found in both vertebrates as well as invertebrates, and they play a crucial role in host immunity. In this study, we isolated a novel ficolin gene (Mnfico3) from the oriental river prawn Macrobrachium nipponense. The complete cDNA sequence of Mnfico3 was 1133 bp long, containing an open reading frame of 765 bp coding for Mnfico3, a protein consisting of 254 amino acids. The Mnfico3 protein contained a putative N-terminal signal peptide and a fibrinogen-related protein domain present at the C-terminal. Phylogenetic analysis indicated that Mnfico3 had a closer evolutionary relationship with vertebrate ficolins than with its invertebrate homologues. Tissue distribution analysis indicated that Mnfico3 was predominantly expressed in muscle, in which its transcription was increased following bacterial challenge by Aeromonas veronii. Function analysis using recombinant protein revealed that rMnFico3 had broad-spectrum binding capacity to a variety of microorganisms and pathogen-associated molecular pattern (PAMP) ligands. Furthermore, rMnFico3 exhibited Ca2+-dependent agglutinating activity against microbes in vitro, and ability to attach to the hemocyte surface which promoted phagocytosis and subsequent clearance of invasive bacteria in vivo. Silencing rMnFico3 in prawn through RNAi did not alter the expression of antimicrobial peptide genes (ALF and Crustin). These results manifested that MnFico3 functioned as a potential pattern recognition receptor (PPR) to mediate cellular immune response by recognizing PAMPs, agglutinating invasive microbes, and promoting phagocytosis of hemocytes.


Assuntos
Proteínas de Artrópodes/genética , Lectinas/genética , Palaemonidae/genética , Palaemonidae/imunologia , Receptores de Reconhecimento de Padrão/genética , Animais , Proteínas de Artrópodes/imunologia , Clonagem Molecular , Fibrinogênio/genética , Imunidade Celular , Imunidade Inata , Lectinas/imunologia , Filogenia , Receptores de Reconhecimento de Padrão/imunologia , Ficolinas
16.
Fish Shellfish Immunol ; 98: 414-419, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962148

RESUMO

Anti-lipopolysaccharide factors (ALFs), as main host-defense molecules of crustaceans, form a unique family of antimicrobial peptides (AMPs). MnALF4 is one isoform of ALFs isolated from the freshwater prawn Macrobrachium nipponense. In the present study, MnALF4 gene was successfully expressed in the yeast Pichia pastoris and the recombinant MnALF4 protein exhibited efficient and broad-spectrum antimicrobial activities against both Gram-positive bacteria and Gram-negative bacteria in vitro. When prawns were injected with rMnALF4 before bacterial challenge with E. coli, the recombinant protein effectively promote the elimination of bacteria by the host. It manifested that rMnALF4 could effectively kill the invading bacteria in vivo. Treatment with rMnALF4 led to remarkable changes in bacterial morphology, such as spheroidization, oversized bacteria, and cell lysis. In addition, rMnALF4 showed weak hemolysis activity to the rabbit red blood cells. Our work suggests that MnALF4 plays an important role in Macrobrachium immunity and is worthy of further investigation as a potential antibacterial agent with high efficacy against bacterial infection and low toxicity to host cells.


Assuntos
Proteínas de Artrópodes/metabolismo , Lipopolissacarídeos/imunologia , Palaemonidae/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Bactérias/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Regulação da Expressão Gênica , Hemólise/efeitos dos fármacos , Pichia/genética , Coelhos , Proteínas Recombinantes/genética
17.
J Proteome Res ; 18(12): 4189-4196, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31657219

RESUMO

In recent years, high-throughput technologies have contributed to the development of a more precise picture of the human proteome. However, 2129 proteins remain listed as missing proteins (MPs) in the newest neXtProt release (2019-02). The main reasons for MPs are a low abundance, a low molecular weight, unexpected modifications, membrane characteristics, and so on. Moreover, >50% of the MS/MS data have not been successfully identified in shotgun proteomics. Open-pFind, an efficient open search engine, recently released by the pFind group in China, might provide an opportunity to identify these buried MPs in complex samples. In this study, proteins and potential MPs were identified using Open-pFind and three other search engines to compare their performance and efficiency with three large-scale data sets digested by three enzymes (Glu-C, Lys-C, and trypsin) with specificity on different amino acid (AA) residues. Our results demonstrated that Open-pFind identified 44.7-93.1% more peptide-spectrum matches and 21.3-61.6% more peptide sequences than the second-best search engine. As a result, Open-pFind detected 53.1% more MP candidates than MaxQuant and 8.8% more candidate MPs than Proteome Discoverer. In total, 5 (PE2) of the 124 MP candidates identified by Open-pFind were verified with 2 or 3 unique peptides containing more than 9 AAs by using a spectrum theoretical prediction with pDeep and synthesized peptide matching with pBuild after spectrum quality analysis, isobaric post-translational modification, and single amino acid variant filtering. These five verified MPs can be saved as PE1 proteins. In addition, three other MP candidates were verified with two unique peptides (one peptide containing more than 9 AAs and the other containing only 8 AAs), which was slightly lower than the criteria listed by C-HPP and required additional verification information. More importantly, unexpected modifications were detected in these MPs. All MS data sets have been deposited into ProteomeXchange with the identifier PXD015759.


Assuntos
Bases de Dados de Proteínas , Software , Testículo/química , Humanos , Masculino , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteínas/genética , Proteínas/metabolismo , Proteômica/métodos , Ferramenta de Busca
18.
Fish Shellfish Immunol ; 95: 635-643, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31678183

RESUMO

Small heat shock proteins (sHSPs) are ATP-independent chaperones and involved into various physiological and stress processes. In the present study, a 28.6-kD sHSP coding gene, MnHSP28.6, was cloned and characterized from the oriental river prawn Macrobrachium nipponense. Tissue distribution analysis via qPCR and western blot revealed that MnHSP28.6 predominantly expressed in muscle. The temporal transcription of MnHSP28.6 in muscle after bacterial challenge, heavy metal exposure and doxorubicin (DOX) injection was investigated by qPCR. The results showed that the expression of MnHSP28.6 were strongly enhanced by both Cd2+ and Cu2+ exposure, as well as DOX injection, but not by bacterial infection. Aggregation assays showed that recombinant MnHSP28.6 could effectively prevent temperature-induced aggregation of citrate synthase, and reduction-induced aggregation of insulin in vitro. MnHSP28.6 also could protect muscle extracts from heat-induced protein denaturation and superoxide dismutase (SOD) inactivation. Expressing MnHSP28.6 in E. coli conferred host cell impressive protection against H2O2 compared to control. These results suggest a protective role of MnHSP28.6 in maintaining protein homeostasis, preventing aggregation, promoting resistance to heavy metal and keeping redox balance.


Assuntos
Proteínas de Artrópodes/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Intoxicação por Metais Pesados/veterinária , Estresse Oxidativo , Palaemonidae/genética , Animais , Proteínas de Artrópodes/genética , Proteínas de Choque Térmico Pequenas/genética , Intoxicação por Metais Pesados/prevenção & controle , Temperatura Alta , Chaperonas Moleculares/genética , Músculos/metabolismo , Oxirredução , Substâncias Protetoras , Proteostase
19.
Fish Shellfish Immunol ; 89: 701-709, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004801

RESUMO

Based on the transcriptome database, we screened out four ferritin subunit genes (MnFer2-5) from the oriental river prawn Macrobrachium nipponense, which encode two non-secretory and two secretory peptides. MnFer2 and 4 possess a strictly conserved ferroxidase site, and MnFer3 has a non-typical ferroxidase site. MnFer5 seems to be a number of ferritin families, which has a distinct dinuclear metal binding motif, but lacks an iron ion channel, a ferroxidase site and a nucleation site. Diverse tissue-specific transcriptions of the four genes indicate their functional diversity in the prawn. Among them, MnFer2 is mainly expressed in hepatopancreas and intestines, MnFer3 and 4 are predominantly expressed in gills, and MnFer5 is widely expressed in various tissues with high presence in intestines, hepatopancreas and haemocytes. The transcription of all the four MnFer genes can be strongly induced by doxorubicin, indicating the involvement of these ferritin subunits in protection from oxidative stress. Upon Aeromonas hydrophila infection, only MnFer5 is persistently up-regulated, while other subunits including MnFer2-4 are down-regulated during the early stage, followed by recovery and even a slight increase at 48 h post bacterial challenge. Moreover, the iron binding capacity of recombinant MnFer2 is also demonstrated in vitro. The E. coli expressing MnFer2 displays increased resistance to hydrogen peroxidase cytotoxicity. These results suggest a protective role of ferritins from M. nipponense in iron homeostasis, redox biology and antibacterial immunity and shed light on the molecule evolution of crustacean ferritin subunits.


Assuntos
Ferritinas/genética , Ferritinas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Estresse Oxidativo/imunologia , Penaeidae/genética , Penaeidae/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Ferritinas/química , Perfilação da Expressão Gênica , Homeostase/imunologia , Oxirredução , Palaemonidae , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Distribuição Aleatória , Alinhamento de Sequência
20.
J Basic Microbiol ; 59(5): 542-551, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30747439

RESUMO

Xylulose kinase is an important enzyme involved in xylose metabolism, which is considered as essential biocatalyst for sustainable lignocellulosic-derived pentose utilization. Bacillus coagulans IPE22 is an ideal bacterium for refinery due to its strong ability to ferment xylose at high temperature. However, the B. coagulans xylose utilization mechanism remains unclear and the related promising enzymes need to be developed. In the present study, the gene coding for xylulose kinase from B. coagulans IPE22 (Bc-XK) was expressed in Escherichia coli BL21 (DE3). Bc-XK has a 1536 bp open reading frame, encoding a protein of 511 amino acids (56.15 kDa). Multiple sequence alignments were performed and a phylogenetic tree was built to evaluate differences among Bc-XK and other bacteria homologs. Bc-XK showed a broad adaptability to high temperature and the enzyme displayed its best performance at pH 8.0 and 60 °C. Bc-XK was activated by Mg2+ , Mn2+ , and Co2+ . Meanwhile, the enzyme could keep activity at 60 °C for at least 180 min. KM values of Bc-XK for xylulose and ATP were 1.29 mM and 0.76 mM, respectively. The high temperature stability of Bc-XK implied that it was an attractive candidate for industrial application.


Assuntos
Bacillus coagulans/enzimologia , Proteínas de Bactérias/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Xilose/metabolismo , Sequência de Aminoácidos , Bacillus coagulans/classificação , Bacillus coagulans/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Metais/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Filogenia , Alinhamento de Sequência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA