Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.540
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497597

RESUMO

Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream ß-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.


Assuntos
Pulmão , Transdução de Sinais , Transdução de Sinais/fisiologia , Diferenciação Celular/genética , Células Epiteliais , Morfogênese/genética , Mesoderma , Regulação da Expressão Gênica no Desenvolvimento
2.
Proc Natl Acad Sci U S A ; 120(5): e2207091120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689650

RESUMO

Galectin-4, a member of the galectin family of animal glycan-binding proteins (GBPs), is specifically expressed in gastrointestinal epithelial cells and is known to be able to bind microbes. However, its function in host-gut microbe interactions remains unknown. Here, we show that intracellular galectin-4 in intestinal epithelial cells (IECs) coats cytosolic Salmonella enterica serovar Worthington and induces the formation of bacterial chains and aggregates. Galectin-4 enchains bacteria during their growth by binding to the O-antigen of lipopolysaccharides. Furthermore, the binding of galectin-4 to bacterial surfaces restricts intracellular bacterial motility. Galectin-4 enhances caspase-1 activation and mature IL-18 production in infected IECs especially when autophagy is inhibited. Finally, orally administered S. enterica serovar Worthington, which is recognized by human galectin-4 but not mouse galectin-4, translocated from the intestines to mesenteric lymph nodes less effectively in human galectin-4-transgenic mice than in littermate controls. Our results suggest that galectin-4 plays an important role in host-gut microbe interactions and prevents the dissemination of pathogens. The results of the study revealed a novel mechanism of host-microbe interactions that involves the direct binding of cytosolic lectins to glycans on intracellular microbes.


Assuntos
Galectina 4 , Inflamassomos , Animais , Camundongos , Humanos , Inflamassomos/metabolismo , Galectina 4/metabolismo , Células Epiteliais/metabolismo , Bactérias , Antígenos O/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(32): e2306461120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523530

RESUMO

Electrochemical nitrate reduction reaction (NO3RR) to ammonia has been regarded as a promising strategy to balance the global nitrogen cycle. However, it still suffers from poor Faradaic efficiency (FE) and limited yield rate for ammonia production on heterogeneous electrocatalysts, especially in neutral solutions. Herein, we report one-pot synthesis of ultrathin nanosheet-assembled RuFe nanoflowers with low-coordinated Ru sites to enhance NO3RR performances in neutral electrolyte. Significantly, RuFe nanoflowers exhibit outstanding ammonia FE of 92.9% and yield rate of 38.68 mg h-1 mgcat-1 (64.47 mg h-1 mgRu-1) at -0.30 and -0.65 V (vs. reversible hydrogen electrode), respectively. Experimental studies and theoretical calculations reveal that RuFe nanoflowers with low-coordinated Ru sites are highly electroactive with an increased d-band center to guarantee efficient electron transfer, leading to low energy barriers of nitrate reduction. The demonstration of rechargeable zinc-nitrate batteries with large-specific capacity using RuFe nanoflowers indicates their great potential in next-generation electrochemical energy systems.

4.
Proc Natl Acad Sci U S A ; 120(50): e2311149120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064508

RESUMO

Zinc-nitrate batteries can integrate energy supply, ammonia electrosynthesis, and sewage disposal into one electrochemical device. However, current zinc-nitrate batteries still severely suffer from the limited energy density and poor rechargeability. Here, we report the synthesis of tetraphenylporphyrin (tpp)-modified heterophase (amorphous/crystalline) rhodium-copper alloy metallenes (RhCu M-tpp). Using RhCu M-tpp as a bifunctional catalyst for nitrate reduction reaction (NO3RR) and ethanol oxidation reaction in neutral solution, a highly rechargeable and low-overpotential zinc-nitrate/ethanol battery is successfully constructed, which exhibits outstanding energy density of 117364.6 Wh kg-1cat, superior rate capability, excellent cycling stability of ~400 cycles, and potential ammonium acetate production. Ex/in situ experimental studies and theoretical calculations reveal that there is a molecule-metal relay catalysis in NO3RR over RhCu M-tpp that significantly facilitates the ammonia selectivity and reaction kinetics via a low energy barrier pathway. This work provides an effective design strategy of multifunctional metal-based catalysts toward the high-performance zinc-based hybrid energy systems.

5.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436464

RESUMO

This study aimed to investigate network-level brain functional changes in breast cancer patients and their relationship with fear of cancer recurrence (FCR). Resting-state functional MRI was collected from 43 patients with breast cancer and 40 healthy controls (HCs). Graph theory analyses, whole-brain voxel-wise functional connectivity strength (FCS) analyses and seed-based functional connectivity (FC) analyses were performed to identify connection alterations in breast cancer patients. Correlations between brain functional connections (i.e. FCS and FC) and FCR level were assessed to further reveal the neural mechanisms of FCR in breast cancer patients. Graph theory analyses indicated a decreased clustering coefficient in breast cancer patients compared to HCs (P = 0.04). Patients with breast cancer exhibited significantly higher FCS in both higher-order function networks (frontoparietal, default mode, and dorsal attention systems) and primary somatomotor networks. Among the hyperconnected regions in breast cancer, the left inferior frontal operculum demonstrated a significant positive correlation with FCR. Our findings suggest that breast cancer patients exhibit less segregation of brain function, and the left inferior frontal operculum is a key region associated with FCR. This study offers insights into the neural mechanisms of FCR in breast cancer patients at the level of brain connectome.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Conectoma , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Medo
6.
Nano Lett ; 24(11): 3307-3314, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456631

RESUMO

Resulting from the dense packing of subnanometer molecular clusters, molecular granular materials (MGMs) are shown to maintain high elasticity far above their apparent glass transition temperature (Tg*). However, our microscopic understanding of their structure-property relationship is still poor. Herein, 1 nm polyhedral oligomeric silsesquioxanes (POSSs) are appended to a backbone chain in a brush configuration with different flexible linker chains. Assemblies of these brush polymers exhibit hierarchical relaxation dynamics with the glass transition arising from the cooperative dynamics of packed POSSs. The interaction among the assemblies can be strengthened by increasing the rigidity of linkers with the MGM relaxation modes changing from colloid- to polymer chain-like behavior, rendering their tunable viscoelasticity. This finally contributes to the decoupling of mechanical and thermal properties by showing elasticity dominant mechanical properties at a temperature 150 K above the Tg*.

7.
Small ; : e2312288, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431966

RESUMO

The development of capable of simultaneously modulating the sluggish electrochemical kinetics, shuttle effect, and lithium dendrite growth is a promising strategy for the commercialization of lithium-sulfur batteries. Consequently, an elaborate preparation method is employed to create a host material consisting of multi-channel carbon microspheres (MCM) containing highly dispersed heterostructure Fe3 O4 -FeTe nanoparticles. The Fe3 O4 -FeTe@MCM exhibits a spontaneous built-in electric field (BIEF) and possesses both lithophilic and sulfophilic sites, rendering it an appropriate host material for both positive and negative electrodes. Experimental and theoretical results reveal that the existence of spontaneous BIEF leads to interfacial charge redistribution, resulting in moderate polysulfide adsorption which facilitates the transfer of polysulfides and diffusion of electrons at heterogeneous interfaces. Furthermore, the reduced conversion energy barriers enhanced the catalytic activity of Fe3 O4 -FeTe@MCM for expediting the bidirectional sulfur conversion. Moreover, regulated Li deposition behavior is realized because of its high conductivity and remarkable lithiophilicity. Consequently, the battery exhibited long-term stability for 500 cycles with 0.06% capacity decay per cycle at 5 C, and a large areal capacity of 7.3 mAh cm-2 (sulfur loading: 9.73 mg cm-2 ) at 0.1 C. This study provides a novel strategy for the rational fabrication of heterostructure hosts for practical Li-S batteries.

8.
Inorg Chem ; 63(17): 7746-7753, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38609344

RESUMO

A novel two-dimensional (2D) Hofmann-type coordination polymer, {FeII(PyHbim)2[Pd(CN)4]}·2CH3OH [1·2CH3OH, PyHbim = 2-(4-pyridyl)benzimidazole], has been synthesized, which can undergo a spontaneous guest exchange, transforming to 1·2H2O in a single-crystal-to-single-crystal (SCSC) manner, shifting from orthorhombic Cmmm to monoclinic C2/m involving the displacement of 2D layers. The solvent-induced SCSC transformation process was reversible and verified through powder X-ray diffraction (PXRD) and single-crystal X-ray crystallography analyses. Both 1·2CH3OH and 1·2H2O exhibit complete and abrupt spin crossover (SCO) behaviors in two steps, while their SCO temperature ranges drastically shift by ca.100 K, spanning room temperature, owing to different intermolecular interactions resulting from diverse interlayer packing manners and host-guest interactions. Besides, a structural phase transition is observed in 1·2CH3OH, contributing to the two-step spin transition.

9.
Inorg Chem ; 63(26): 12350-12359, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38887050

RESUMO

Hybrid metal halide materials with charming phase transition behaviors have attracted considerable attention. In former works, much attention has been focused on the phase transition triggered by the order-disorder or displacement motions of the organic component. However, manipulating the variation of the inorganic component to achieve the phase transition has rarely been reported. Herein, two novel organic-inorganic hybrid materials, [THPM]n[AgX2]n (THPM = 3,4,5,6-tetrahydropyrimidin-1-ium, X = I for 1 and Br for 2) with the [AgX2]nn- anionic chain structure, were synthesized. At 293 K, the [AgX2]nn- chains in 1 were constructed by the tetramer units of Ag atoms, while that in 2 was assembled by the dimer structure. Upon heating to 355 K, owing to the variation of the metallophilic interaction between adjacent Ag atoms, a unique transformation process from tetramer to dimer in [AgI2]nn- chains of 1 can be detected and endow 1 with a giant anisotropic thermal expansion with linear strain of ∼7% and shear strain of ∼20%, which can be used as a mechanical actuator for switching. Alternatively, for 2, no phase transition process can be observed upon the temperature variation. This work provides an effective approach to design phase transition materials triggered by the inorganic part.

10.
Environ Sci Technol ; 58(24): 10863-10873, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842426

RESUMO

Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 µg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.


Assuntos
Nitratos , Oxirredução , Nitratos/química , Técnicas Eletroquímicas , Catálise , Metais/química
11.
Brain ; 146(8): 3542-3557, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137515

RESUMO

Human speech and language are among the most complex motor and cognitive abilities. The discovery of a mutation in the transcription factor FOXP2 in KE family members with speech disturbances has been a landmark example of the genetic control of vocal communication in humans. Cellular mechanisms underlying this control have remained unclear. By leveraging FOXP2 mutation/deletion mouse models, we found that the KE family FOXP2R553H mutation directly disables intracellular dynein-dynactin 'protein motors' in the striatum by induction of a disruptive high level of dynactin1 that impairs TrkB endosome trafficking, microtubule dynamics, dendritic outgrowth and electrophysiological activity in striatal neurons alongside vocalization deficits. Dynactin1 knockdown in mice carrying FOXP2R553H mutations rescued these cellular abnormalities and improved vocalization. We suggest that FOXP2 controls vocal circuit formation by regulating protein motor homeostasis in striatal neurons, and that its disruption could contribute to the pathophysiology of FOXP2 mutation/deletion-associated speech disorders.


Assuntos
Corpo Estriado , Fala , Humanos , Camundongos , Animais , Fala/fisiologia , Corpo Estriado/metabolismo , Neurônios/metabolismo , Neostriado/metabolismo , Distúrbios da Fala , Mutação/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Vocalização Animal/fisiologia
12.
Phys Chem Chem Phys ; 26(7): 6345-6350, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38314831

RESUMO

The out-of-plane antidamping-like orbital torque fosters great hope for high-efficiency spintronic devices. Here we report experimentally the observation of out-of-plane antidamping-like torque that could be generated by z-polarized orbital current in ferromagnetic-metal/oxidized Cu (CuOx) bilayers, which is presented unambiguously by the magnetic field angle dependence of the spin-torque ferromagnetic resonance signal. The CuOx thickness dependence of the orbital torque ratios highlights that the interfacial effect would be responsible for the generation of orbital current. Besides that, the CuOx thickness dependence of the damping parameter further proves the observation of antidamping-like torque. This result contributes to enriching the orbital-related theory of the generation mechanism of the orbital torque.

13.
Phys Chem Chem Phys ; 26(9): 7695-7705, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372167

RESUMO

The determination of impact sensitivity of energetic materials traditionally relies on expensive and safety-challenged experimental means. This has instigated a shift towards scientific computations to gain insights into and predict the impact response of energetic materials. In this study, we refine the phonon-vibron coupling coefficients ζ in energetic materials subjected to impact loading, building upon the foundation of the phonon up-pumping model. Considering the full range of interactions between high-order phonon overtones and molecular vibrational frequencies, this is a pivotal element for accurately determining phonon-vibron coupling coefficients ζ. This new coupling coefficient ζ relies exclusively on phonon and molecular vibrational frequencies within the range of 0-700 cm-1. Following a regression analysis involving ζ and impact sensitivity (H50) of 45 molecular nitroexplosives, we reassessed the numerical values of damping factors, establishing a = 2.5 and b = 35. This coefficient is found to be a secondary factor in determining sensitivity, secondary to the rate of decomposition propagation and thermodynamic factor (heat of explosion). Furthermore, the relationship between phonon-vibron coupling coefficients ζ and impact sensitivity was studied in 16 energetic crystalline materials and eight nitrogen-rich energetic salts. It was observed that as the phonon-vibron coupling coefficient increases, the tendency for reduced impact sensitivity H50 still exists.

14.
J Phys Chem A ; 128(21): 4189-4198, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38748760

RESUMO

In order to investigate the impact of an external electric field on the sensitivity of ß-HMX explosives, we employ first-principles calculations to determine the molecular structure, dipole moment, and electronic properties of both ß-HMX crystals and individual ß-HMX molecules under varying electric fields. When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of ß-HMX, the calculation results indicate that an increase in the bond length (N1-N3/N1'-N3') of the triggering bond, an increase in the main Qnitro (N3, N3') value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. Among these directions, the [010] direction exhibits the highest sensitivity, which can be attributed to the significantly smaller effective mass along the [010] direction compared with the [001] and [100] directions. Moreover, the application of an external electric field along the Y direction of the coordinate system on individual ß-HMX molecules reveals that the strong polarization effect induced by the electric field enhances the decomposition of the N1-N3 bonds. In addition, due to the periodic potential energy of ß-HXM crystal, the polarization effect of ß-HMX crystal caused by an external electric field is much smaller than that of a single ß-HXM molecule.

15.
Mol Ther ; 31(5): 1451-1467, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37016580

RESUMO

Tubular epithelial cells (TECs) play critical roles in the development of diabetic nephropathy (DN), and can activate macrophages through the secretion of exosomes. However, the mechanism(s) of TEC-exosomes in macrophage activation under DN remains unknown. By mass spectrometry, 1,644 differentially expressed proteins, especially Dll4, were detected in the urine exosomes of DN patients compared with controls, which was confirmed by western blot assay. Elevated Epsin1 and Dll4/N1ICD expression was observed in kidney tissues in both DN patients and db/db mice and was positively associated with tubulointerstitial damage. Exosomes from high glucose (HG)-treated tubular cells (HK-2) with Epsin1 knockdown (KD) ameliorated macrophage activation, TNF-α, and IL-6 expression, and tubulointerstitial damage in C57BL/6 mice in vivo. In an in vitro study, enriched Dll4 was confirmed in HK-2 cells stimulated with HG, which was captured by THP-1 cells and promoted M1 macrophage activation. In addition, Epsin1 modulated the content of Dll4 in TEC-exosomes stimulated with HG. TEC-exosomes with Epsin1-KD significantly inhibited N1ICD activation and iNOS expression in THP-1 cells compared with incubation with HG alone. These findings suggested that Epsin1 could modulate tubular-macrophage crosstalk in DN by mediating exosomal sorting of Dll4 and Notch1 activation.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Movimento Celular , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Células Epiteliais/metabolismo , Glucose/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
16.
Clin Oral Implants Res ; 35(3): 251-257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38031527

RESUMO

OBJECTIVE: This study aimed to evaluate the differences in the accuracy of immediate intraoral, immediate extraoral, and delayed dental implant placement with surgical guides (static computer-aided implant surgery) in patients treated with mandibular reconstruction. METHODS: This was a retrospective study. The patients were divided into three groups: immediate intraoral placement (IIO), immediate extraoral placement (IEO), and delayed placement (DEL). Four variables were used to compare the planned and actual implant positions: angular deviation, three-dimensional (3D) deviation at the entry point of the implant, 3D deviation at the apical point of the implant, and depth deviation. RESULTS: The angular deviation was significantly higher in the IIO group than in the IEO (p < .05) and DEL (p < .05) groups. The 3D deviation at the entry point was significantly higher in the IIO group than in the IEO (p < .05) and DEL (p < .01) groups. The 3D deviation at the apical point was significantly higher in the IIO group than in the IEO (p < .01) and DEL (p < .01) groups. The depth deviation was significantly higher in the IIO group than in the IEO (p < .05) and DEL (p < .05) groups. There was no statistical difference between the IEO and DEL group in angular and 3D deviation. CONCLUSION: With surgical guides, among the different approaches for implant placement, delayed implant placement remains the most accurate approach for patients treated with mandibular reconstruction.


Assuntos
Implantes Dentários , Reconstrução Mandibular , Cirurgia Assistida por Computador , Humanos , Implantação Dentária Endóssea/métodos , Estudos Retrospectivos , Cirurgia Assistida por Computador/métodos , Desenho Assistido por Computador , Imageamento Tridimensional , Tomografia Computadorizada de Feixe Cônico
17.
Nucleic Acids Res ; 50(4): 2190-2200, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35100402

RESUMO

Unlike many other aminoacyl-tRNA synthetases, alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout biology. While Caenorhabditis elegans cytoplasmic AlaRS (CeAlaRSc) retains the prototype structure, its mitochondrial counterpart (CeAlaRSm) contains only a residual C-terminal domain (C-Ala). We demonstrated herein that the C-Ala domain from CeAlaRSc robustly binds both tRNA and DNA. It bound different tRNAs but preferred tRNAAla. Deletion of this domain from CeAlaRSc sharply reduced its aminoacylation activity, while fusion of this domain to CeAlaRSm selectively and distinctly enhanced its aminoacylation activity toward the elbow-containing (or L-shaped) tRNAAla. Phylogenetic analysis showed that CeAlaRSm once possessed the C-Ala domain but later lost most of it during evolution, perhaps in response to the deletion of the T-arm (part of the elbow) from its cognate tRNA. This study underscores the evolutionary gain of C-Ala for docking AlaRS to the L-shaped tRNAAla.


Assuntos
Alanina-tRNA Ligase , Aminoacil-tRNA Sintetases , Alanina-tRNA Ligase/genética , Aminoacil-tRNA Sintetases/genética , Aminoacilação , Filogenia , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Alanina/genética
18.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301890

RESUMO

Cytosolic lipopolysaccharides (LPSs) bind directly to caspase-4/5/11 through their lipid A moiety, inducing inflammatory caspase oligomerization and activation, which is identified as the noncanonical inflammasome pathway. Galectins, ß-galactoside-binding proteins, bind to various gram-negative bacterial LPS, which display ß-galactoside-containing polysaccharide chains. Galectins are mainly present intracellularly, but their interactions with cytosolic microbial glycans have not been investigated. We report that in cell-free systems, galectin-3 augments the LPS-induced assembly of caspase-4/11 oligomers, leading to increased caspase-4/11 activation. Its carboxyl-terminal carbohydrate-recognition domain is essential for this effect, and its N-terminal domain, which contributes to the self-association property of the protein, is also critical, suggesting that this promoting effect is dependent on the functional multivalency of galectin-3. Moreover, galectin-3 enhances intracellular LPS-induced caspase-4/11 oligomerization and activation, as well as gasdermin D cleavage in human embryonic kidney (HEK) 293T cells, and it additionally promotes interleukin-1ß production and pyroptotic death in macrophages. Galectin-3 also promotes caspase-11 activation and gasdermin D cleavage in macrophages treated with outer membrane vesicles, which are known to be taken up by cells and release LPSs into the cytosol. Coimmunoprecipitation confirmed that galectin-3 associates with caspase-11 after intracellular delivery of LPSs. Immunofluorescence staining revealed colocalization of LPSs, galectin-3, and caspase-11 independent of host N-glycans. Thus, we conclude that galectin-3 amplifies caspase-4/11 oligomerization and activation through LPS glycan binding, resulting in more intense pyroptosis-a critical mechanism of host resistance against bacterial infection that may provide opportunities for new therapeutic interventions.


Assuntos
Caspases/metabolismo , Galectina 3/metabolismo , Inflamassomos/imunologia , Inflamação/imunologia , Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Animais , Citosol/metabolismo , Galectina 3/genética , Inflamassomos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Piroptose
19.
Zygote ; 32(1): 77-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38130161

RESUMO

This study aimed to investigate the structural and metabolic changes in cumulus cells of underweight women and their effects on oocyte maturation and fertilization. The cytoplasmic ultrastructure was analyzed by electron microscopy, mitochondrial membrane potential by immunofluorescence, and mitochondrial DNA copy number by relative quantitative polymerase chain reaction. The expression of various proteins including the oxidative stress-derived product 4-hydroxynonenal (4-HNE) and autophagy and apoptosis markers such as Vps34, Atg-5, Beclin 1, Lc3-I, II, Bax, and Bcl-2 was assessed and compared between groups. Oocyte maturation and fertilization rates were lower in underweight women (P < 0.05), who presented with cumulus cells showing abnormal mitochondrial morphology and increased cell autophagy. Compared with the mitochondrial DNA copies of the control group, those of the underweight group increased but not significantly. The mitochondrial membrane potential was similar between the groups (P = 0.8). Vps34, Atg-5, Lc3-II, Bax, and Bcl-2 expression and 4-HNE levels were higher in the underweight group compared with the control group (P < 0.01); however, the Bax/Bcl-2 ratio was lower in the underweight group compared with the control group (P = 0.031). Additionally, Beclin 1 protein levels were higher in the underweight group compared with the control group but without statistical significance. In conclusion, malnutrition and other conditions in underweight women may adversely affect ovulation, and the development, and fertilization of oocytes resulting from changes to the intracellular structure of cumulus cells and metabolic processes. These changes may lead to reduced fertility or unsatisfactory reproduction outcomes in women.


Assuntos
Células do Cúmulo , Magreza , Feminino , Humanos , Proteína X Associada a bcl-2/genética , Magreza/metabolismo , Oócitos , DNA Mitocondrial/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos
20.
BMC Biol ; 21(1): 176, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592232

RESUMO

BACKGROUND: Lotus corniculatus is a widely distributed perennial legume whose great adaptability to different environments and resistance to barrenness make it an excellent forage and ecological restoration plant. However, its molecular genetics and genomic relationships among populations are yet to be uncovered. RESULT: Here we report on a genomic variation map from worldwide 272 L. corniculatus accessions by genome resequencing. Our analysis suggests that L. corniculatus accessions have high genetic diversity and could be further divided into three subgroups, with the genetic diversity centers were located in Transcaucasia. Several candidate genes and SNP site associated with CNglcs content and growth traits were identified by genome-wide associated study (GWAS). A non-synonymous in LjMTR was responsible for the decreased expression of CNglcs synthesis genes and LjZCD was verified to positively regulate CNglcs synthesis gene CYP79D3. The LjZCB and an SNP in LjZCA promoter were confirmed to be involved in plant growth. CONCLUSION: This study provided a large number of genomic resources and described genetic relationship and population structure among different accessions. Moreover, we attempt to provide insights into the molecular studies and breeding of CNglcs and growth traits in L. corniculatus.


Assuntos
Lotus , Lotus/genética , Melhoramento Vegetal , Loci Gênicos , Demografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA