Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Med Chem ; 269: 116329, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508117

RESUMO

Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.


Assuntos
Catepsina B , Catepsina B/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Lisossomos/química , Lisossomos/metabolismo
2.
Biomed Pharmacother ; 165: 115271, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544284

RESUMO

Cardiovascular diseases are the main killers threatening human health. Many studies have shown that abnormal energy metabolism plays a key role in the occurrence and development of acute and chronic cardiovascular diseases. Regulating cardiac energy metabolism is a frontier topic in the treatment of cardiovascular diseases. However, we are not very clear about the choice of different substrates, the specific mechanism of energy metabolism participating in the course of cardiovascular disease, and how to develop appropriate drugs to regulate energy metabolism to treat cardiovascular disease. Therefore, this paper reviews how energy metabolism participates in cardiovascular pathophysiological processes and potential drugs aimed at interfering energy metabolism.It is expected to provide good suggestions for promoting the clinical prevention and treatment of cardiovascular diseases from the perspective of energy metabolism.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Metabolismo Energético
3.
Neural Netw ; 110: 225-231, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30599419

RESUMO

The stochastic gradient descent algorithm (SGD) is the main optimization solution in deep learning. The performance of SGD depends critically on how learning rates are tuned over time. In this paper, we propose a novel energy index based optimization method (EIOM) to automatically adjust the learning rate in the backpropagation. Since a frequently occurring feature is more important than a rarely occurring feature, we update the features to different extents according to their frequencies. We first define an energy neuron model and then design an energy index to describe the frequency of a feature. The learning rate is taken as a hyperparameter function according to the energy index. To empirically evaluate the EIOM, we investigate different optimizers with three popular machine learning models: logistic regression, multilayer perceptron, and convolutional neural network. The experiments demonstrate the promising performance of the proposed EIOM compared with that of other optimization algorithms.


Assuntos
Aprendizado Profundo/tendências , Redes Neurais de Computação , Algoritmos , Aprendizado de Máquina/tendências
4.
Comput Intell Neurosci ; 2018: 8639367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29581722

RESUMO

One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Redes Neurais de Computação , Tecnologia de Sensoriamento Remoto/métodos
5.
PLoS One ; 13(2): e0192473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444144

RESUMO

For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.


Assuntos
Probabilidade , Funções Verossimilhança , Modelos Teóricos
6.
PLoS One ; 12(7): e0180049, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28727737

RESUMO

Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA