Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 9455-9464, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512342

RESUMO

Owing to the high H2O activity, the aqueous electrolyte in the Zn battery exhibits a narrow electrochemical window and inevitable hydrogen evolution reaction, limiting the anode utilization ratio and performance at high voltage. Carbonate ester, the well-developed electrolyte solvent in Li-ion batteries, exhibits aprotic properties and high anodic stability. However, its use in Zn metal batteries is limited due to the low solubility of Zn salts in carbonate esters. Herein, we propose a carbonate ester-based electrolyte (EC:DMC:EMC = 1:1:1 wt %), which contains a new Zn salt (Zn(BHFip)2) characterized by low cost, easy synthesis, and excellent aprotic solvent solubility. The BHFip- anion assists in forming Zn2+ conductive SEI on the anode and decomposes at high voltage to generate a protective CEI layer on the cathode. The Zn//Zn symmetric cell using such electrolyte achieves a remarkable Zn utilization ratio of 91% for 125 h, which has rarely been reported before. Furthermore, the Zn//LiMn2O4 full cell with an average operation voltage of 1.7 V demonstrates reliable cycling for 135 cycles with an N/P ratio of 1:1. In addition, the Zn//LiNi0.5Mn1.5O4 full cell exhibits a high discharge median voltage exceeding 2.2 V for 280 cycles, with the high voltage plateau (above 2 V) constituting 82% of the total capacity.

2.
Small ; : e2311197, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593375

RESUMO

Biomass-derived porous carbon materials are meaningful to employ as a hard carbon precursor for anode materials of sodium-ion batteries (SIBs) from a sustainability perspective. Here, a straightforward approach is proposed to develop rich closed pores in pinenut-derived carbon, with the aim of improving Na+ plateau storage by adjusting the pyrolysis temperature. The optimized sample, namely the pinenut-derived carbon at 1300 °C, demonstrates remarkable reversible specific capacity of 278 mAh g-1, along with a high initial Coulomb efficiency of 85% and robust cycling stability (with a capacity retention of 89% after 800 cycles at 0.2 A g-1). In situ and ex situ analyses unveil that the developed closed pores play a significant role in enhancing the plateau capacity, providing compelling evidence for the "adsorption-filling" mechanism. Moreover, the corresponding full-cell achieves a high energy density of 245.7 Wh kg-1 (based on the total weight of both electrode active materials) and exhibits outstanding rate capability (191.4 mAh g-1 at 3 A g-1).

3.
ACS Appl Mater Interfaces ; 15(2): 3586-3598, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598884

RESUMO

Silicon-based materials are considered the most promising anodes for next-generation lithium-ion batteries (LIBs) owing to their high specific capacity. However, poor interfacial stability due to enormous volume changes severely restricts their mass application in LIBs. Here, we design a fluoroethylene carbonate (FEC)-containing dual-salt (LiFSI-LiPF6) ether-based localized high-concentration electrolyte (D-LHCE-F) for enhancing the interfacial stability of silicon-based electrodes. It is revealed that the dominating LiFSI salt of superior chemical and thermal stability prevents the formation of corrosive HF, while the addition of FEC improves the interface stability by promoting the formation of protective LiF-rich SEI and increasing the flexibility of the interface. This robust and flexible SEI layer can adapt to substantial variations in the volume of silicon electrodes while preserving the integrity of the interface. The SiOx/C electrode using the unique D-LHCE-F retains up to 78.5% of its initial capacity after 500 cycles at 0.5C, well surpassing that of the control electrolyte (3.4% capacity retention). More notably, the cycle life of the SiOx/C||NCM90 (LiNi0.9Co0.05Mn0.05O2) full batteries is effectively enhanced thanks to the stabilized electrode/electrolyte interfaces. The key findings of this work offer crucial knowledge for rationally designing electrolyte chemistry to enable the practical application of high-energy-density LIBs adopting silicon-based anodes.

4.
ACS Appl Mater Interfaces ; 14(33): 38281-38290, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35944094

RESUMO

Silicon-based anodes have received widespread attention because of their high theoretical capacity, which, however, still faces challenges for practical applications due to the large volume changes during repeated charge/discharge processes, despite being developed for many years. Herein, we explore an electrolyte additive, allyl phenyl sulfone (APS), to enhance the interfacial stability and long-term durability of the SiOx/C electrode. It is revealed that additive APS contributes to forming a dense and robust solid electrolyte interphase film with high mechanical strength and favorable lithium-ion diffusion kinetics, which effectively suppresses the parasitic side reactions at the electrode-electrolyte interface. Meanwhile, the strong interaction between APS and trace water/acid in the electrolyte is further beneficial for enhancing the interfacial stability. By incorporating 0.5 wt% APS, the cycling stability of the silicon-based electrode is significantly improved, reserving a capacity of 777 mAh g-1 after 200 cycles at 0.5C and 30 °C (79.3% capacity retention), which well exceeds that of the baseline electrolyte (57.8% capacity retention). More importantly, additive APS effectively promotes the cycling performance of the corresponding SiOx/C||NCM90 (LiNi0.9Co0.05Mn0.05O2) full battery. This work provides valuable understanding in developing new electrolyte additives to enable the commercial application of high-energy density lithium-ion batteries using silicon-based anodes.

5.
J Colloid Interface Sci ; 618: 431-441, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364544

RESUMO

Nickel-rich (Ni-rich) cathode materials, LiNixCoyMnzO2 (NCM, x ≥ 0.9, x + y + z = 1) hold great promise for developing high energy density lithium ion batteries especially for vehicle electrification. However, the practical application of Ni-rich cathode materials is still suffered from fast structural and interfacial degradation, and the resulted capacity decay. In this study, a diazacyclo type electrolyte additive, 2-fluoropyrazine (2-FP), was explored for the first time to boost the interfacial stabilization of single crystal LiNi0.90Co0.05Mn0.05O2 (NCM90) cathode. The capacity retention of the NCM90 is evidently promoted from 72.3% to 82.1% after 200 cycles at 1C (180 mA g-1) when adding 0.2% 2-FP into the electrolyte. The improvement of the electrochemical performance is ascribed to the generation of a compact and homogeneous cathode electrolyte interphase (CEI) film through ring-opening electrochemical polymerization of 2-FP upon the NCM90 electrode particles. This enhanced CEI layer benefits the suppression of the decomposition of LiPF6 electrolyte and the dissolution of the transition metals (Co and Mn), thus preventing the detrimental side reactions between the NCM90 electrode and the electrolyte.

6.
ACS Appl Mater Interfaces ; 14(26): 29878-29885, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749281

RESUMO

All-solid-state batteries (ASSBs), particularly based on sulfide solid-state electrolytes (SSEs), are expected to meet the requirements of high-energy-density energy storage. However, the unstable interface between the ceramic pellets and lithium (Li) metal can induce unconstrained Li-dendrite growth with safety concerns. Herein, we design a carbon fluoride-silver (CFx-Ag) composite to modify the SSEs. As lithium fluoride (LiF) nanocrystals can be in situ formed through electrochemical reactions, this LiF-enriched modification layer with high surface energy can more effectively suppress Li dendrite penetration and interfacial reactions between the SSEs and anode. Remarkably, the all-solid-state symmetric cells using a lithium-boron alloy (LiB) anode can stably work to above 2,500 h under 0.5 mA cm-2 and 2 mAh cm-2 at 60 °C without shorting. A modified LiB||LiNi0.6Mn0.2Co0.2O2 (NMC622) full cell also demonstrates an improved capacity retention and high Coulombic efficiency (99.9%) over 500 cycles. This work provides an advanced solid-state interface architecture to address Li-dendrite issues of ASSBs.

7.
ACS Appl Mater Interfaces ; 13(10): 12069-12078, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33667073

RESUMO

Ni-rich layered structure materials are appealing cathodes for high-energy-density lithium-ion batteries developed for electric vehicles, drones, power tools, etc. However, poor interfacial stability between a Ni-rich cathode and carbonate electrolyte, especially at high temperatures, and fast capacity fading still hinder their mass market penetration. Here, we investigate cyclopentyl isocyanate (CPI) with a single isocyanate (-NCO) functional group as a bifunctional electrolyte additive for the first time to improve the interfacial stability of Ni-rich cathode LiNi0.83Co0.12Mn0.05O2 (NCM83). With an electrolyte containing 2 wt % CPI, the NCM83 cathode shows capacity retention of up to 92.3% after 200 cycles at 1C and 30 °C, much higher than that with the standard electrolyte (78.6%). It is demonstrated that the -NCO of CPI could largely inhibit the thermal decomposition of LiPF6 salt and scavenge water and hydrogen fluoride (HF) species, improving electrolyte stability. More importantly, the additive CPI could be preferentially oxidized, forming a stabilized and protective cathode electrolyte interphase (CEI) layer on the surface of NCM83, which effectively suppresses the parasitic side reactions and maintains the superior interfacial charge-transfer and lithium-ion diffusion kinetics. Both functions enable a significant improvement in electrochemical performance at both 30 and 60 °C.

8.
ACS Appl Mater Interfaces ; 13(14): 16427-16436, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33788530

RESUMO

Ternary LiNixCoyMnzO2 oxides with extremely high nickel (Ni) contents (x ≥ 0.9) are promising cathode candidates developed for higher-energy-density lithium-ion batteries, with an aim to relieve mileage anxiety. However, the structural and interfacial instability still restrict their application in electric vehicles. In this work, a novel electrolyte additive 1,2,4-1H-Triazole (HTZ) is introduced to improve the interfacial stability of LiNi0.9Co0.05Mn0.05O2 (NCM90), promoting cycle life both at 30 °C and a harsh condition of 60 °C, as well as rate capability. The NCM90||Li cells with 0.3% HTZ-added electrolyte retain 86.6% of their original capacity after 150 cycles at 1C and 30 °C, well exceeding 74.8% obtained with the baseline electrolyte. It is revealed that the additive HTZ could inhibit the thermal decomposition of LiPF6 salt and suppress the generation of HF acidic species. More importantly, additive HTZ is preferentially oxidized to construct a compact and dense cathode electrolyte interphase (CEI) layer, which is beneficial for stabilizing the electrode/electrolyte interface and suppressing unwanted side reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA