Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036367

RESUMO

Moscatilin can protect rat pheochromocytoma cells against methylglyoxal-induced damage. Elimination of the effect of advanced glycation end-products (AGEs) but activation of AMP-activated protein kinase (AMPK) are the potential therapeutic targets for the neurodegenerative diseases. Our study aimed to clarify AMPK signaling's role in the beneficial effects of moscatilin on the diabetic/hyperglycemia-associated neurodegenerative disorders. AGEs-induced injury in SH-SY5Y cells was used as an in vitro neurodegenerative model. AGEs stimulation resulted in cellular viability loss and reactive oxygen species production, and mitochondrial membrane potential collapse. It was observed that the cleaved forms of caspase-9, caspase-3, and poly (ADP-ribose) polymerase increased in SH-SY5Y cells following AGEs exposure. AGEs decreased Bcl-2 but increased Bax and p53 expression and nuclear factor kappa-B activation in SH-SY5Y cells. AGEs also attenuated the phosphorylation level of AMPK. These AGEs-induced detrimental effects were ameliorated by moscatilin, which was similar to the actions of metformin. Compound C, an inhibitor of AMPK, abolished the beneficial effects of moscatilin on the regulation of SH-SY5Y cells' function, indicating the involvement of AMPK. In conclusion, moscatilin offers a promising therapeutic strategy to reduce the neurotoxicity or AMPK dysfunction of AGEs. It provides a potential beneficial effect with AGEs-related neurodegenerative diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Compostos de Benzil/farmacologia , NF-kappa B/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Glutationa/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada
2.
Planta Med ; 84(14): 1030-1037, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29653456

RESUMO

The present study aimed to determine whether hesperidin, a plant-based active flavanone found in citrus fruits, can prevent high glucose-induced retinal pigment epithelial (RPE) cell impairment. Cultured human RPE cells (ARPE-19) were exposed to a normal glucose concentration (5.5 mM) for 4 d and then soaked in either normal (5.5 mM) or high (33.3 mM) concentrations of D-glucose with or without different concentrations of hesperidin (10, 20, or 40 µM) for another 48 h. The survival rates of the cells were measured using a 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction assay. With the help of a fluorescent probe, the intracellular production of reactive oxygen species (ROS) was evaluated. Colorimetric assay kits were used to assess the antioxidant enzyme activities, and western blotting was used to measure the expression of apoptosis-related protein. Hesperidin was effective in inhibiting high glucose-induced ROS production, preventing loss of cell viability, and promoting the endogenous antioxidant defense components, including glutathione peroxidase, superoxide dismutase, catalase, and glutathione, in a concentration-dependent manner. Furthermore, high glucose triggered cell apoptosis via the upregulation of caspase-9/3, enhancement of cytochrome c release into the cytosol, and subsequent interruption of the Bax/Bcl-2 balance. These detrimental effects were ameliorated by hesperidin in a concentration-dependent manner. We conclude that through the scavenging of ROS and modulation of the mitochondria-mediated apoptotic pathway, hesperidin may protect RPE cells from high glucose-induced injury and thus may be a candidate in preventing the visual impairment caused by diabetic retinopathy.


Assuntos
Glucose/farmacologia , Hesperidina/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Western Blotting , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colorimetria , Relação Dose-Resposta a Droga , Glucose/antagonistas & inibidores , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/patologia , Superóxido Dismutase/metabolismo
3.
Molecules ; 24(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587838

RESUMO

Gigantol is a bibenzyl compound derived from several medicinal orchids. This biologically active compound has shown promising therapeutic potential against diabetic cataracts, but whether this compound exerts beneficial effects on the other diabetic microvascular complications remains unclear. This study was carried out to examine effects of gigantol on high glucose-induced renal cell injury in cultured mouse kidney mesangial cells (MES-13). MES-13 cells were pretreated with gigantol (1, 5, 10 or 20 µmol/L) for 1 h followed by further exposure to high (33.3 mmol/L) glucose for 48 h. Gigantol concentration dependently enhanced cell viability followed by high glucose treatment in MES-13 cells. High glucose induced reactive oxygen species (ROS) generation, malondialdehyde production and glutathione deficiency were recoved in MES-13 cells pretreated with gigantol. High glucose triggered cell apoptosis via the the loss of mitochondrial membrane potential, depletion of adenosine triphosphate, upregulation of caspases 9 and 3, enhancement of cytochrome c release, and subsequent interruption of the Bax/Bcl-2 balance. These detrimental effects were ameliorated by gigantol. High glucose also induced activation of JNK, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in MES-13 cells, which were blocked by gigantol. The results suggest that treatment MES-13 cells with gigantol halts high glucose-induced renal dysfunction through the suppression of the ROS/MAPK/NF-κB signaling pathways. Our data are of value to the understanding the mechanism for gigantol, and would benefit the study of drug development or food supplement for diabetes and nephropathy.


Assuntos
Bibenzilas/farmacologia , Guaiacol/análogos & derivados , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Guaiacol/farmacologia , Peroxidação de Lipídeos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia
4.
Molecules ; 22(12)2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29258224

RESUMO

We investigate diosmin for its effect on the ARPE-19 human retinal pigment epithelial cells exposed to high glucose, a model of diabetic retinopathy (DR). After incubation for 4 days with a normal (5 mmol/L) concentration of D-glucose, ARPE-19 cells were exposed separately to normal or high concentrations of D-glucose (30 mmol/L) with or without diosmin at different concentrations (0.1, 1, 10 µg/mL) for another 48 h. Next, we assessed cell viability, reactive oxygen species (ROS) generation and antioxidant enzyme activities. In order to examine the underlying molecular mechanisms, we meanwhile analyzed the expressions of Bax, Bcl-2, total and phosphorylated JNK and p38 mitogen-activated protein kinase (MAPK). Diosmin dose dependently enhanced cell viability following high glucose treatment in ARPE-19 cells. The activities of superoxide dismutase and glutathione peroxidase, as well as the levels of reduced glutathione were decreased, while it was observed that levels of ROS in high glucose cultured ARPE-19 cells increased. High glucose also disturbed Bax and Bcl-2 expression, interrupted Bcl-2/Bax balance, and triggered subsequent cytochrome c release into the cytosol and activation of caspase-3. These detrimental effects were ameliorated dose dependently by diosmin. Furthermore, diosmin could abrogate high glucose-induced apoptosis as well as JNK and P38 MAPK phosphorylation in ARPE-19 cells. Our results suggest that treatment ARPE-19 cells with diosmin halts hyperglycemia-mediated oxidative damage and thus this compound may be a candidate for preventing the visual impairment caused by DR.


Assuntos
Citrus/química , Retinopatia Diabética/metabolismo , Diosmina/farmacologia , Glucose/efeitos adversos , Epitélio Pigmentado da Retina/citologia , Sobrevivência Celular , Células Cultivadas , Retinopatia Diabética/tratamento farmacológico , Relação Dose-Resposta a Droga , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos
5.
J Tissue Viability ; 26(3): 202-207, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28454680

RESUMO

Zerumbone is a monocyclic sesquiterpene compound. Based on report, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The study was undertaken to evaluate the therapeutic effects of topical zerumbone on excision wounds in rats. A 1% (w/w) simple ointment containing zerumbone was applied topically (100 mg ointment per rat) once a day on full-thickness excision wounds created on rats. The wound tissue was removed and used for estimation of antioxidant activity and to observe histopathological changes. Immunohistochemical staining was performed to study the expression pattern of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-ß1 and collagen IV. Zerumbone exhibited antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Candida albicans and Candida tropicali. Zerumbone ointment has potent wound healing capacity as evident from the wound contraction on 15th post wounding day. The histopathological examinations of healed wound sections showed greater tissue regeneration, more fibroblasts and angiogenesis in zerumbone ointment-treated group. VEGF, TGF-ß1 and collagen IV expression were also correlative with the healing pattern observed. Zerumbone possesses potent antioxidant activity by increasing superoxide dismutase, catalase, glutathione and decreased lipid peroxidation. The synergistic effects of both antimicrobial and antioxidant activities in zerumbone are deduced to have accelerated the wound repair. The results demonstrate that zerumbone possessed strong wound healing potential and can be exploited to accelerate excision wound healing.


Assuntos
Sesquiterpenos/farmacologia , Cicatrização/fisiologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colágeno/análise , Colágeno/sangue , MAP Quinase Quinase Quinases/análise , MAP Quinase Quinase Quinases/sangue , Masculino , Pomadas/administração & dosagem , Pomadas/uso terapêutico , Ratos , Ratos Wistar/sangue , Sesquiterpenos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/sangue
6.
Molecules ; 21(12)2016 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-27973425

RESUMO

Zerumbone ameliorates retinal damage by blocking advanced glycation end products and their receptor system in streptozotocin-diabetic rats. Because of the multiple factors involved in diabetic retinopathy (DR) etiology, the mechanisms of zerumbone that are mainly responsible for its ameliorative effect on DR need to be further clarified. In the present study, zerumbone (20 mg or 40 mg/kg) or fenofibric acid (100 mg/kg) was orally administered to diabetic rats by intragastric gavage once daily for three consecutive months. Zerumbone displayed similar characteristics to fenofibric acid in reducing retinal vascular permeability and leukostasis in diabetic rats. Fundus photographs showed that large retinal vessel diameters were decreased in zerumbone-treated diabetic rats. Zerumbone not only down-regulated the gene expression of retinal angiogenic parameters, but also reduced the expression of inflammatory cytokines and chemokines in the retina of diabetic rats. Moreover, zerumbone reduced the p38 MAPK phosphorylation and abrogated the nuclear translocation of NF-κB p65 in the retina of diabetic rats. In conclusion, treatment of diabetic rats with zerumbone attenuates the severity of retinal inflammation and angiogenesis, via inhibition of p38 MAPK and NF-κB signaling pathways. These benefits of zerumbone for DR appear to be linked to its antihyperglycemic and antihyperlipidemic effects.


Assuntos
Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Microvasos/efeitos dos fármacos , Vasos Retinianos/efeitos dos fármacos , Sesquiterpenos/uso terapêutico , Fator de Transcrição RelA/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Permeabilidade Capilar/efeitos dos fármacos , Fenofibrato/análogos & derivados , Fenofibrato/uso terapêutico , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Masculino , Microvasos/lesões , Ratos , Ratos Wistar , Retina/efeitos dos fármacos , Vasos Retinianos/lesões , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Fator de Transcrição RelA/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Planta Med ; 80(2-3): 121-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24431014

RESUMO

The anti-inflammatory potential of Lonicera japonica makes it an excellent source of novel medicinal targets to reduce inflammation in diabetic nephropathy. We aimed to investigate whether the ethanol extract of the flowering aerial parts of L. japonica exerts an ameliorative effect on diabetic renal inflammation using streptozotocin-induced diabetic rats. Diabetic rats were treated orally with the ethanol extract of the flowering aerial parts of L. japonica (100 and 200 mg/kg/day) for 8 weeks. The rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood urea nitrogen, and proteinuria, along with a marked elevation in the ratio of kidney weight to body weight; all of these abnormalities were significantly reversed by the ethanol extract of the flowering aerial parts of L. japonica. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with the ethanol extract of the flowering aerial parts of L. japonica. It reduced the accumulation of ED-1-expressing macrophages in renal tissue of diabetic rats, almost completely abolished T cell infiltration and attenuated the expression of proinflammatory cytokines. The ethanol extract of the flowering aerial parts of L. japonica downregulated the protein expression of p38 mitogen-activated protein kinase in the kidney of diabetic rats. The results suggest that it has the property to inhibit the activity of p-38 MAPK-mediated inflammatory response to halt the progression of diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Lonicera/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Rim/efeitos dos fármacos , Rim/patologia , Extratos Vegetais/uso terapêutico , Ratos
8.
Planta Med ; 80(11): 870-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25116118

RESUMO

The protective effects of ruscogenin on nonalcoholic steatohepatitis in hamsters fed a high-fat diet were investigated. Ruscogenin (0.3, 1.0, or 3.0 mg/kg/day) was orally administered by gavage once daily for eight weeks. A high-fat diet induced increases in plasma levels of total cholesterol, triglycerides, and free fatty acids, while the degree of insulin resistance was lowered by ruscogenin. High-fat diet-induced hepatic steatosis and necroinflammation were improved by ruscogenin. Gene expression of inflammatory cytokines and activity of nuclear transcription factor-κB were also increased in the high-fat diet group, which were attenuted by ruscogenin. Ruscogenin decreased hepatic mRNA levels of sterol regulatory element-binding protein-1c and its lipogenic target genes. The hepatic mRNA expression of peroxisome proliferator-activated receptor α, together with its target genes responsible for fatty acid ß-oxidation were upregulated by ruscogenin. In conclusion, these findings suggest that ruscogenin may attenuate high-fat diet-induced steatohepatitis through anti-inflammatory mechanisms, reducing hepatic lipogenic gene expression, and upregulating proteins in the fatty acid oxidation process.


Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Substâncias Protetoras/farmacologia , Espirostanos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Cricetinae , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Oxirredução/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química , Espirostanos/administração & dosagem , Espirostanos/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
9.
BMC Complement Altern Med ; 14: 156, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24886259

RESUMO

BACKGROUND: The polysaccharides from Liriopes Radix (PSLR) has been indicated to ameliorate insulin signaling transduction and glucose metabolism. We aimed to investigate whether PSLR exerts an ameliorative effect on renal damage in diabetes induced by streptozotocin. METHODS: Diabetes was induced with STZ (60 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats in the treatment group were orally dosed with PSLR (200 and 300 mg/kg/day for 8 weeks. The normal rats were chosen as nondiabetic control group. Changes in renal function-related parameters in plasma and urine were analyzed at the end of the study. Kidneys were isolated for pathology histology, immunohistochemistry, and Western blot analyses. RESULTS: Diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, blood urea nitrogen and proteinuria, along with marked elevation in the ratio of kidney weight to body weight. All of these abnormalities were significantly reversed by PSLR. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with PSLR. The less protein expressions of renal nephrin and podocin in diabetic rats were increased following treatment with PSLR. PSLR reduced the accumulation of ED-1-expressing macrophages in renal tissue of diabetic rats. PSLR almost completely abolished T cells infiltration and attenuated the expression of proinflammatory cytokines. PSLR treatments not only reduced the degradation of inhibitory kappa B kinase, but also downregulated the protein expression of nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) in diabetic kidney. CONCLUSIONS: The results suggest that the renal protective effects of PSLR occur through improved glycemic control and renal structural changes, which are involved in the inhibition of NF-κB and p-38 MAPK mediated inflammation.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Liliaceae/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Polissacarídeos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Rim/efeitos dos fármacos , Masculino , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Raízes de Plantas/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico , Ratos , Ratos Wistar , Transdução de Sinais , Estreptozocina
10.
BMC Complement Altern Med ; 14: 110, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24666993

RESUMO

BACKGROUND: Ruscogenin is a major steroid sapogenin in the traditional Chinese herb Ophiopogon japonicus that have multiple bioactivities. Recent studies have demonstrated that ruscogenin is involved in down-regulation of intercellular adhesion molecule-1 (ICAM-1) and nuclear factor-κB (NF-κB) activation in anti-inflammatory pathways. We hypothesized that ruscogenin protects against diabetic nephropathy (DN) by inhibiting NF-κB-mediated inflammatory pathway. To test this hypothesis, the present study was to examine the effects of ruscogenin in rats with streptozotocin (STZ)-induced DN. METHODS: Diabetes was induced with STZ (60 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats in the treatment group were orally dosed with 0.3, 1.0 or 3.0 mg/kg ruscogenin for 8 weeks. The normal rats were chosen as nondiabetic control group. The rats were sacrificed 10 weeks after induction of diabetes. Changes in renal function-related parameters in plasma and urine were analyzed at the end of the study. Kidneys were isolated for pathology histology, immunohistochemistry, and Western blot analyses. RESULTS: Ruscogenin administration did not lower the levels of plasma glucose and glycosylated hemoglobin in STZ-diabetic rats. Diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, blood urea nitrogen and proteinuria, along with marked elevation in the ratio of kidney weight to body weight, that were reversed by ruscogenin. Ruscogenin treatment was found to markedly improve histological architecture in the diabetic kidney. Renal NF-κB activity, as wells as protein expression and infiltration of macrophages were increased in diabetic kidneys, accompanied by an increase in protein content of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in kidney tissues. All of the above abnormalities were reversed by ruscogenin treatment, which also decreased the expression of transforming growth factor-ß1 and fibronectin in the diabetic kidneys. CONCLUSIONS: Our data demonstrated that ruscogenin suppressed the inflammation and ameliorated the structural and functional abnormalities of the diabetic kidney in rats might be associated with inhibition of NF-κB mediated inflammatory genes expression.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Rim/efeitos dos fármacos , Ophiopogon/química , Fitoterapia , Espirostanos/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Regulação para Baixo , Fibronectinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Rim/metabolismo , Masculino , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Transdução de Sinais , Espirostanos/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo
11.
Phytother Res ; 28(2): 187-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23519881

RESUMO

We investigated the effects of 6-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) on the inhibition of rosiglitazone (RGZ)-induced adipogenesis in 3T3-L1 cells. The morphological changes were photographed based on staining lipid accumulation by Oil-Red O in RGZ (1 µmol/l)-treated 3T3-L1 cells without or with various concentrations of 6-gingerol on differentiation day 8. Quantitation of triglycerides content was performed in cells on day 8 after differentiation induction. Differentiated cells were lysed to detect mRNA and protein levels of adipocyte-specific transcription factors by real-time reverse transcription-polymerase chain reaction and Western blot analysis, respectively. 6-gingerol (50 µmol/l) effectively suppressed oil droplet accumulation and reduced the sizes of the droplets in RGZ-induced adipocyte differentiation in 3T3-L1 cells. The triglyceride accumulation induced by RGZ in differentiated 3T3-L1 cells was also reduced by 6-gingerol (50 µmol/l). Treatment of differentiated 3T3-L1 cells with 6-gingerol (50 µmol/l) antagonized RGZ-induced gene expression of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein α. Additionally, the increased levels of mRNA and protein in adipocyte-specific fatty acid binding protein 4 and fatty acid synthase induced by RGZ in 3T3-L1 cells were decreased upon treatment with 6-gingerol. Our data suggests that 6-gingerol may be beneficial in obesity, by reducing adipogenesis partly through the down-regulating PPARγ activity.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Tiazolidinedionas/efeitos adversos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/antagonistas & inibidores , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Camundongos , Obesidade , PPAR gama/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rosiglitazona , Triglicerídeos/metabolismo
12.
Nutrients ; 16(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674927

RESUMO

The excessive activation of glutamate in the brain is a factor in the development of vascular dementia. γ-Oryzanol is a natural compound that has been shown to enhance brain function, but more research is needed to determine its potential as a treatment for vascular dementia. This study investigated if γ-oryzanol can delay or improve glutamate neurotoxicity in an in vitro model of differentiated HT-22 cells and explored its neuroprotective mechanisms. The differentiated HT-22 cells were treated with 0.1 mmol/L glutamate for 24 h then given γ-oryzanol at appropriate concentrations or memantine (10 µmol/L) for another 24 h. Glutamate produced reactive oxygen species and depleted glutathione in the cells, which reduced their viability. Mitochondrial dysfunction was also observed, including the inhibition of mitochondrial respiratory chain complex I activity, the collapse of mitochondrial transmembrane potential, and the reduction of intracellular ATP levels in the HT-22 cells. Calcium influx triggered by glutamate subsequently activated type II calcium/calmodulin-dependent protein kinase (CaMKII) in the HT-22 cells. The activation of CaMKII-ASK1-JNK MAP kinase cascade, decreased Bcl-2/Bax ratio, and increased Apaf-1-dependent caspase-9 activation were also observed due to glutamate induction, which were associated with increased DNA fragmentation. These events were attenuated when the cells were treated with γ-oryzanol (0.4 mmol/L) or the N-methyl-D-aspartate receptor antagonist memantine. The results suggest that γ-oryzanol has potent neuroprotective properties against glutamate excitotoxicity in differentiated HT-22 cells. Therefore, γ-oryzanol could be a promising candidate for the development of therapies for glutamate excitotoxicity-associated neurodegenerative diseases, including vascular dementia.


Assuntos
Ácido Glutâmico , Mitocôndrias , Fármacos Neuroprotetores , Fenilpropionatos , Espécies Reativas de Oxigênio , Ácido Glutâmico/toxicidade , Fenilpropionatos/farmacologia , Animais , Fármacos Neuroprotetores/farmacologia , Camundongos , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oryza/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Memantina/farmacologia , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
13.
Arch Med Sci ; 20(2): 632-640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757031

RESUMO

Introduction: Impairments in wound healing commonly occur among patients with diabetes. Herbal medicines have a long history of usage in wound care management. Super green (SG) is a newly discovered natural product obtained from Musa paradisiaca. This study aimed to investigate the efficacy of the topical application of SG in healing surgical wounds in diabetic rats. Material and methods: Wistar rats received a one-time intraperitoneal injection of streptozotocin to induce type 1 diabetes. Full-thickness excisional skin wounds were created on the backs of the rats. The relevant groups were topically treated with the indicated concentrations of SG or vehicle dressing throughout the study duration. Histological analysis was performed and the mRNA levels of proinflammatory cytokines were measured to evaluate the improvement of wound closure. Results: The wound area ratio of the SG (1/6000 dilution)-treated group was greatly reduced compared to that of the vehicle-treated group. The histological analysis showed fewer inflammatory cells, accelerated re-epithelialization, and increased collagen deposition in SG 1/6000-treated wounds. The gene expression levels of tumor necrosis factor-α, interleukin-1ß, and interleukin-6 were decreased and the levels of type I and type III collagen were increased after SG treatment. Conclusions: These results show that the most therapeutically efficacious concentration of SG (1/6000 dilution) can enhance wound repair in diabetic rats. SG has the potential to be a new treatment strategy for diabetic wounds.

14.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675498

RESUMO

The phenolic aldehyde syringaldehyde (SA) has been shown to have an antihyperglycemic effect in diabetic rats due to increased glucose utilization and insulin sensitivity. To understand the direct effect of SA on the GLP-1 receptor, STZ-induced diabetic rats were used. The levels of pro-inflammatory cytokines, liver enzymes, and renal function were measured using specific ELISA kits. The mechanisms of SA effects were investigated using CHO-K1 cells, pancreatic Min-6 cells, and cardiomyocyte H9c2 cells. The results indicated that the antihyperglycemic effect of SA in diabetic rats was abolished by blocking the GLP-1 receptor with an antagonist. SA has a direct effect on the GLP-1 receptor when using CHO-K1 cells transfected with the exogenous GLP-1 receptor gene. In addition, SA stimulated insulin production in Min-6 cells by activating GLP-1 receptors. SA caused a dose-dependent rise in GLP-1 receptor mRNA levels in cardiac H9c2 cells. These in vitro results support the notion that SA has a direct effect on the GLP-1 receptor. Otherwise, SA inhibited the increase of pro-inflammatory cytokines, including interleukins and tumor TNF-α, in type 1 diabetic rats in a dose-dependent manner. Moreover, as with liraglutide, SA reduced plasma lipid profiles, including total cholesterol and triglyceride, in mixed diet-induced type 2 diabetic rats. Intriguingly, chronic treatment with SA (as with liraglutide) reversed the functions of both the liver and the kidney in these diabetic rats. SA displayed less efficiency in reducing body weight and food consumption compared to liraglutide. In conclusion, SA effectively activates GLP-1 receptors, resulting in a reduction in diabetic-related complications in rats. Therefore, it is beneficial to develop SA as a chemical agonist for clinical applications in the future.

15.
Int J Antimicrob Agents ; 63(3): 107090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242250

RESUMO

This study examined the geographic distribution of minimum inhibitory concentrations (MICs) of antifungals against Cryptococcus isolates. Data were collected on the MICs of specific antifungals (amphotericin B, 5-flucytosine, fluconazole, voriconazole, posaconazole, and isavuconazole) against various Cryptococcus species for the period 2010 to 2020 from the Antimicrobial Testing Leadership and Surveillance database. Cryptococcus isolates were collected from samples of blood and cerebrospinal fluid (CSF) from patients hospitalized in different regions worldwide. We applied the epidemiological cutoff values (ECVs) of antifungals against various Cryptococcus species to distinguish wild-type (WT) from non-WT Cryptococcus isolates. A total of 395 isolates of Cryptococcus species cultured from blood (n = 201) or CSF (n = 194) were analyzed. C. grubii (n = 270), C. neoformans (n = 111), and C. gattii (n = 11) were the three predominant species causing bloodstream infections (BSI) or meningitis/meningoencephalitis (MME). The proportion of MICs above the ECV (1 mg/L) for amphotericin B among C. neoformans isolates was significantly lower than that among C. gattii isolates (MICs >0.5 mg/L; P < 0.001), as evaluated using the chi-square test. For most isolates of the three predominant Cryptococcus species, the MICs of new triazoles were ≤0.25 mg/L. The MICs of fluconazole and amphotericin B in the BSI/MME-causing Cryptococcus isolates collected from patients hospitalized in the Asia-Western Pacific region and Europe were significantly lower (i.e., the distributions were more leftward) than those in North America and Latin America. Ongoing monitoring of MIC data for important antifungals against cryptococcosis is crucial.


Assuntos
Anti-Infecciosos , Cryptococcus gattii , Cryptococcus neoformans , Endrin/análogos & derivados , Humanos , Antifúngicos/farmacologia , Anfotericina B , Fluconazol/farmacologia , Liderança
16.
J Glob Antimicrob Resist ; 36: 411-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331030

RESUMO

OBJECTIVES: To evaluate the susceptibility of globally pneumonia-causing meropenem-resistant (MEM-R) Acinetobacter baumannii isolates against important antibiotics and estimate appropriate dosages of indicated antibiotics. METHODS: We extracted the 2014-2021 Antimicrobial Testing of Leadership Surveillance database regarding the susceptibility of MEM-R A. baumannii isolates causing pneumonia against important antibiotics. The susceptibility and carbapenemase-encoding gene (CPEG) data of pneumonia-causing MEM-R A. baumannii isolates from patients hospitalized in intensive care units of five major regions were analyzed. The susceptibility breakpoints (SBP) recommended by the Clinical and Laboratory Standards Institute (CLSI) in 2022, other necessary criteria [SBP of MIC for colistin, 2 mg/L, in the CLSI 2018; and cefoperazone-sulbactam (CFP-SUL), 16 mg/L], and the pharmacokinetic and pharmacodynamic data of indicated antibiotics were employed. RESULTS: Applying the aforementioned criteria, we observed the susceptible rates of colistin, minocycline, and CFP-SUL against the pneumonia-causing MEM-R A. baumannii isolates globally (n = 2905) were 93.2%, 69.1%, and 26.3%, respectively. Minocycline was significantly more active in vitro (MIC ≤4 mg/L) against the pneumonia-causing MEM-R A. baumannii isolates collected from North and South America compared to those from other regions (>90% vs. 58-72%). Additionally, blaOXA-23 and blaOXA-72 were the predominant CPEG in pneumonia-causing MEM-R A. baumannii isolates. CONCLUSIONS: After deliberative estimations, dosages of 200 mg minocycline intravenously every 12 h (SBP, 8 mg/L), 100 mg tigecycline intravenously every 12 h (SBP, 1 mg/L), and 160 mg nebulized colistin methanesulphonate every 8 h (SBP, 2 mg/L) are needed for the effective treatment of pneumonia-causing MEM-R A. baumannii isolates.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Pneumonia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Minociclina/farmacologia , Colistina/farmacologia , Colistina/uso terapêutico , Liderança , Farmacorresistência Bacteriana Múltipla , Infecções por Acinetobacter/tratamento farmacológico , Anti-Infecciosos/farmacologia , Pneumonia/tratamento farmacológico
17.
Heliyon ; 10(7): e28755, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586372

RESUMO

Fish mint, Houttuynia cordata Thunb. (HCT) is an edible vegetable that has also been used in traditional folk medicines. As both a medicinal herb and a dietary source, HCT has been clinically proven to be a pivotal ingredient in formulas administered to alleviate COVID-19 symptoms. With the increasing market demand for imported materials, ensuring the quality consistency of HCT becomes a significant concern. In this study, the growing time for hydroponically-cultivated HCT with seaweed extract and amino acids added (HCTW) reduced by half compared to conventional soil-cultivated HCT (HCTS). Key quantified components in HCTW, flavonoid glycosides and caffeoylquinic acid derivatives, exhibited a 143% increase over HCTS. These crucial constituents were responsible for possessing antioxidant activity (IC50 < 25 µg/mL) and anti-nitrite oxide production (IC50 < 20 µg/mL). An economically-designed hydroponic system with appropriate additives is proposed to replace HCTS with improvements of growth time, overall production yields, and bioactive qualities.

18.
Planta Med ; 79(8): 616-21, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23568627

RESUMO

This study was undertaken to evaluate the therapeutic effects of topical chlorogenic acid on excision wounds in Wistar rats. A 1 % (w/w) chlorogenic acid or silver sulfadiazine ointment was applied topically once a day for 15 days on full-thickness excision wounds created on rats. The 1 % (w/w) chlorogenic acid ointment had potent wound healing capacity as evident from the wound contraction on the 15th post-surgery day, which was similar to that produced by 1 % (w/w) silver sulfadiazine ointment. Increased rates of epithelialization were observed in the treated rats. It also improved cellular proliferation, increased tumor necrosis factor-α levels during the inflammatory phase (12 h, 24 h, 48 h, and 72 h post-wounding) of wound healing, upregulated transforming growth factor-ß1 and elevated collagen IV synthesis in the chlorogenic acid-treated group. The results also indicated that chlorogenic acid possesses potent antioxidant activity by increasing superoxide dismutase, catalase, and glutathione, and decreasing lipid peroxidation. In conclusion, these results demonstrate that topical application of chlorogenic acid can accelerate the process of excision wound healing by its ability to increase collagen synthesis through upregulation of key players such as tumor necrosis factor-α and transforming growth factor-ß1 in different phases of wound healing as well as by its antioxidant potential.


Assuntos
Antioxidantes/farmacologia , Ácido Clorogênico/farmacologia , Cicatrização/efeitos dos fármacos , Administração Tópica , Animais , Proliferação de Células , Colágeno Tipo IV/biossíntese , Masculino , Pomadas , Ratos , Ratos Wistar , Sulfadiazina de Prata/administração & dosagem , Fator de Crescimento Transformador beta1/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
19.
Nutrients ; 15(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36771255

RESUMO

Degenerative diseases of the brain include Parkinson's disease (PD), which is associated with moveable signs and is still incurable. Hispidin belongs to polyphenol and originates primarily from the medicinal fungi Inonotus and Phellinus, with distinct biological effects. In the study, MES23.5 cells were induced by 1-methyl-4-phenylpyridinium (MPP+) to build a cell model of PD in order to detect the protective effect of hispdin and to specify the underlying mechanism. Pretreatment of MES23.5 cells with 1 h of hispdin at appropriate concentrations, followed by incubation of 24 h with 2 µmol/L MPP+ to induce cell damage. MPP+ resulted in reactive oxygen species production that diminished cell viability and dopamine content. Mitochondrial dysfunction in MS23.5 cells exposed to MPP+ was observed, indicated by inhibition of activity in the mitochondrial respiratory chain complex I, the collapse of potential in mitochondrial transmembrane, and the liberation of mitochondrial cytochrome c. Enabling C-Jun N-terminal kinase (JNK), reducing Bcl-2/Bax, and enhancing caspase-9/caspase-3/PARP cleavage were also seen by MPP+ induction associated with increased DNA fragmentation. All of the events mentioned above associated with MPP+-mediated mitochondrial-dependent caspases cascades were attenuated under cells pretreatment with hispidin (20 µmol/L); similar results were obtained during cell pretreatment with pan-JNK inhibitor JNK-IN-8 (1 µmol/L) or JNK3 inhibitor SR3576 (25 µmol/L). The findings show that hispidin has neuroprotection against MPP+-induced mitochondrial dysfunction and cellular apoptosis and suggest that hispidin can be seen as an assist in preventing PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Humanos , 1-Metil-4-fenilpiridínio/toxicidade , Neurônios Dopaminérgicos , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Linhagem Celular , Apoptose , Mitocôndrias , Espécies Reativas de Oxigênio/farmacologia , Linhagem Celular Tumoral , Fármacos Neuroprotetores/farmacologia
20.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37895888

RESUMO

Andrographolide (ADG) is contained in bitter plants, and its effects are widely thought to be associated with taste receptors. The current study used animal studies and cell lines to investigate the role of ADG in diabetic models. The Takeda G-protein-coupled receptor (TGR5) was directly influenced by ADG, and this boosted GLP-1 synthesis in CHO-K1 cells transfected with the TGR5 gene. However, this was not seen in TGR5-mutant cells. The human intestinal L-cell line NCI-H716 showed an increase in GLP-1 production in response to ADG. In NCI-H716 cells, the TGR5 inhibitor triamterene reduced the effects of ADG, including the rise in TGR5 mRNA levels that ADG caused. Additionally, as with the antihyperglycemic impact in type-1 diabetic rats, the increase in plasma-active GLP-1 level caused by ADG was enhanced by a DPP-4 inhibitor. The recovery of the hypoglycemic effect in diabetic rats and the increase in plasma GLP-1 caused by ADG were both suppressed by TGR5 blockers. As a result, after activating TGR5, ADG may boost GLP-1 synthesis in diabetic rats, enhancing glucose homeostasis. In Min-6 cells, a pancreatic cell line grown in culture, ADG-induced insulin secretion was also examined. Blocking GLP-1 receptors had little impact, suggesting that ADG directly affects TGR5 activity in Min-6 cells. A TGR5 mRNA level experiment in Min-6 cells further confirmed that TGR5 is activated by ADG. The current study revealed a novel finding suggesting that ADG may activate TGR5 in diabetic rats in a way that results in enhanced insulin and GLP-1 production, which may be helpful for future research and therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA