Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(5): 1486-1499, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38457289

RESUMO

The petals of rose (Rosa sp.) flowers determine the ornamental and industrial worth of this species. The number of petals in roses was previously shown to be subject to fluctuations in ambient temperature. However, the mechanisms by which rose detects and responds to temperature changes are not entirely understood. In this study, we identified short interstitial telomere motifs (telo boxes) in the second intron of AGAMOUS (RcAG) from China rose (Rosa chinensis) that play an essential role in precise temperature perception. The second intron of RcAG harbors two telo boxes that recruit telomere repeat binding factors (RcTRBs), which interact with CURLY LEAF (RcCLF) to compose a repressor complex. We show that this complex suppresses RcAG expression when plants are subjected to low temperatures via depositing H3K27me3 marks (trimethylation of lysine 27 on histone H3) over the RcAG gene body. This regulatory mechanism explains the low-temperature-dependent decrease in RcAG transcript levels, leading to the production of more petals under these conditions. Our results underscore an interesting intron-mediated regulatory mechanism governing RcAG expression, enabling rose plants to perceive temperature cues and establish petal numbers.


Assuntos
Flores , Histonas , Íntrons , Proteínas de Plantas , Rosa , Rosa/genética , Rosa/metabolismo , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento , Histonas/metabolismo , Histonas/genética , Íntrons/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Metilação , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Lisina/metabolismo
2.
J Neurophysiol ; 132(3): 744-756, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39015075

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease, and mild cognitive impairment (MCI) is considered a transitional stage between healthy aging and dementia. Early detection of MCI can help slow down the progression of AD. At present, there are few studies exploring the characteristics of abnormal dynamic brain activity in AD. This article uses a method called leading eigenvector dynamics analysis (LEiDA) to study resting-state functional magnetic resonance imaging (rs-fMRI) data of AD, MCI, and cognitively normal (CN) participants. By identifying repetitive states of phase coherence, intergroup differences in brain dynamic activity indicators are examined, and the neurobehavioral scales were used to assess the relationship between abnormal dynamic activities and cognitive function. The results showed that in the indicators of occurrence probability and lifetime, the globally synchronized state of the patient group decreased. The activity state of the limbic regions significantly detected the difference between AD and the other two groups. Compared to CN, AD and MCI have varying degrees of increase in default and visual region activity states. In addition, in the analysis related to the cognitive scales, it was found that individuals with poorer cognitive abilities were less active in the globally synchronized state and more active in limbic region activity state and visual region activity state. Taken together, these findings reveal abnormal dynamic activity of resting-state networks in patients with AD and MCI, provide new insights into the dynamic analysis of brain networks, and contribute to a deeper understanding of abnormal spatial dynamic patterns in AD patients.NEW & NOTEWORTHY Alzheimer's disease (AD) is a neurodegenerative disease, but few studies have explored the characteristics of abnormal dynamic brain activity in AD patients. Here, our report reveals the abnormal dynamic activity of the patients' resting-state network, providing new insights into the dynamic analysis of brain networks and helping to gain a deeper understanding of the abnormal spatial dynamic patterns in AD patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Feminino , Idoso , Masculino , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Descanso , Idoso de 80 Anos ou mais
3.
J Transl Med ; 22(1): 6, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167440

RESUMO

BACKGROUND: Tandem C2 domains, nuclear (TC2N) is a C2 domain-containing protein that belongs to the carboxyl-terminal type (C-type) tandem C2 protein family, and acts as an oncogenic driver in several cancers. Previously, we preliminarily reported that TC2N mediates the PI3K-Akt signaling pathway to inhibit tumor growth of breast cancer (BC) cells. Beyond that, its precise biological functions and detailed molecular mechanisms in BC development and progression are not fully understood. METHODS: Tumor tissues of 212 BC patients were subjected to tissue microarray and further assessed the associations of TC2N expression with pathological parameters and FASN expression. The protein levels of TC2N and FASN in cell lines and tumor specimens were monitored by qRT-PCR, WB, immunofluorescence and immunohistochemistry. In vitro cell assays, in vivo nude mice model was used to assess the effect of TC2N ectopic expression on tumor metastasis and stemness of breast cancer cells. The downstream signaling pathway or target molecule of TC2N was mined using a combination of transcriptomics, proteomics and lipidomics, and the underlying mechanism was explored by WB and co-IP assays. RESULTS: Here, we found that the expression of TC2N remarkedly silenced in metastatic and poorly differentiated tumors. Function-wide, TC2N strongly inhibits tumor metastasis and stem-like properties of BC via inhibition of fatty acid synthesis. Mechanism-wise, TC2N blocks neddylated PTEN-mediated FASN stabilization by a dual mechanism. The C2B domain is crucial for nuclear localization of TC2N, further consolidating the TRIM21-mediated ubiquitylation and degradation of FASN by competing with neddylated PTEN for binding to FASN in nucleus. On the other hand, cytoplasmic TC2N interacts with import proteins, thereby restraining nuclear import of PTEN to decrease neddylated PTEN level. CONCLUSIONS: Altogether, we demonstrate a previously unidentified role and mechanism of TC2N in regulation of lipid metabolism and PTEN neddylation, providing a potential therapeutic target for anti-cancer.


Assuntos
Neoplasias da Mama , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/patologia , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Ácidos Graxos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
4.
New Phytol ; 243(4): 1387-1405, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849320

RESUMO

Flowering is a vital agronomic trait that determines the economic value of most ornamental plants. The flowering time of rose (Rosa spp.) is photoperiod insensitive and is thought to be tightly controlled by light intensity, although the detailed molecular mechanism remains unclear. Here, we showed that rose plants flower later under low-light (LL) intensity than under high-light (HL) intensity, which is mainly related to the stability of PHYTOCHROME-INTERACTING FACTORs (RcPIFs) mediated by OPEN STOMATA 1-Like (RcOST1L) under different light intensity regimes. We determined that HL conditions trigger the rapid phosphorylation of RcPIFs before their degradation. A yeast two-hybrid screen identified the kinase RcOST1L as interacting with RcPIF4. Moreover, RcOST1L positively regulated rose flowering and directly phosphorylated RcPIF4 on serine 198 to promote its degradation under HL conditions. Additionally, phytochrome B (RcphyB) enhanced RcOST1L-mediated phosphorylation of RcPIF4 via interacting with the active phyB-binding motif. RcphyB was activated upon HL and recruited RcOST1L to facilitate its nuclear accumulation, in turn leading to decreased stability of RcPIF4 and flowering acceleration. Our findings illustrate how RcPIF abundance safeguards proper rose flowering under different light intensities, thus uncovering the essential role of RcOST1L in the RcphyB-RcPIF4 module in flowering.


Assuntos
Flores , Proteínas de Plantas , Complexo de Endopeptidases do Proteassoma , Proteólise , Rosa , Fosforilação , Flores/fisiologia , Rosa/fisiologia , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Luz , Fitocromo B/metabolismo , Ligação Proteica , Núcleo Celular/metabolismo
5.
J Appl Toxicol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828519

RESUMO

Bisphenol A (BPA) is widely exposed in populations worldwide and has negative effects on spermatogenesis both in animals and humans. The homeostasis of the actin cytoskeleton in the spermatogenic epithelium is crucial for spermatogenesis. Actin cytoskeleton destruction in the seminiferous epithelium is one of the important reasons for BPA-induced spermatogenesis disorder. However, the underlying molecular mechanisms remain largely unexplored. Herein, we explored the role and mechanism of Rsad2, an interferon-stimulated gene in BPA-induced actin cytoskeleton disorder in mouse GC-2 spermatocyte cell lines. After BPA exposure, the actin cytoskeleton was dramatically disrupted and the cell morphology was markedly altered accompanied by a significant increase in Rsad2 expression both in mRNA and protein levels in GC-2 cells. Furthermore, the phalloidin intensities and cell morphology were restored obviously when interfering with the expression of Rsad2 in BPA-treated GC-2 cells. In addition, we observed a significant decrease in intracellular ATP levels after BPA treatment, while the ATP level was obviously upregulated when knocking down the expression of Rsad2 in BPA-treated cells compared to cells treated with BPA alone. Moreover, Rsad2 relocated to mitochondria after BPA exposure in GC-2 cells. BPA promoted Rsad2 expression by activating type I IFN-signaling in GC-2 cells. In summary, Rsad2 mediated BPA-induced actin cytoskeletal disruption in GC-2 cells, which provided data to reveal the mechanism of BPA-induced male reproductive toxicity.

6.
Ecotoxicol Environ Saf ; 279: 116461, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763051

RESUMO

Polystyrene nanoplastics (PS-NPs) have been reported to accumulate in the testes and constitute a new threat to reproductive health. However, the exact effects of PS-NPs exposure on testicular cells and the underlying mechanisms remain largely unknown. The C57BL/6 male mice were orally administered with PS-NPs (80 nm) at different dosages (0, 10, and 40 mg/kg/day) for 60 days, and GC-1 cells were treated with PS-NPs in this study. Enlarged seminiferous tubule lumens and a loose and vacuolated layer of spermatogenic cells were observed in PS-NPs-exposed mice. Spermatogenic cells which may be one of the target cells for this reproductive damage, were decreased in the mice from PS-NPs group. PS-NPs caused spermatogenic cells to undergo senescence, manifested as elevated SA-ß-galactosidase activity and activated senescence-related signaling p53-p21/Rb-p16 pathways, and induced cell cycle arrest. Mechanistically, Gene Ontology (GO) enrichment suggested the key role of reactive oxygen species (ROS) in PS-NPs-induced spermatogenic cell senescence, and this result was confirmed by measuring ROS levels. Moreover, ROS inhibition partially attenuated the senescence phenotype of spermatogenic cells and DNA damage. Using the male health atlas (MHA) database, Sirt1 was filtrated as the critical molecule in the regulation of testicular senescence. PS-NPs induced overexpression of the main ROS generator Nox2, downregulated Sirt1, increased p53 and acetylated p53 in vivo and in vitro, whereas these disturbances were partially restored by pterostilbene. In addition, pterostilbene intervention significantly alleviated the PS-NPs-induced spermatogenic cell senescence and attenuated ROS burst. Collectively, our study reveals that PS-NPs exposure can trigger spermatogenic cell senescence mediated by p53-p21/Rb-p16 signaling by regulating the Sirt1/ROS axis. Importantly, pterostilbene intervention may be a promising strategy to alleviate this damage.


Assuntos
Senescência Celular , Camundongos Endogâmicos C57BL , Poliestirenos , Espécies Reativas de Oxigênio , Sirtuína 1 , Animais , Masculino , Sirtuína 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Senescência Celular/efeitos dos fármacos , Camundongos , Poliestirenos/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Espermatogênese/efeitos dos fármacos , Nanopartículas/toxicidade , Dano ao DNA , Transdução de Sinais/efeitos dos fármacos
7.
Plant Dis ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154200

RESUMO

Angelica sinensis (Oliv.) Diels, is a perennial herbaceous plant of the Umbelliferae family. It has a long history of cultivation and is highly valued as a traditional Chinese medicine in China (Zhang et al. 2012). In September 2023, leaf blight on A. sinensis with an average disease incidence of 56% was recorded in an approximately 6.7-ha production field in Lijiang, Yunnan province, China (26.8215°N, 100.2369°E). At first, small, chlorotic lesions appeared on the leaves. They subsequently increased in density and gradually merged, causing leaves to yellow and wither. Ultimately the blight casused death of the entire foliage. In order to identify the causal agent, cross-sectional segments (5×5 mm2) were cut from the edge of leaf lesions, surface disinfected with a 1% sodium hypochlorite solution for 3 min and rinsed three times with sterile distilled water. They were subsequently placed on potato dextrose agar (PDA) plates and incubated for 3 days under a 12-h photoperiod at 28℃. A total of ten isolates with similar morphological characteristics were obtained by single spore isolation. After 10 days of incubation on PDA, the colony morphology of these isolates was characterized by a brownish central area with a white edge. Aged colonies became wrinkled in the center of the colony. Conidia (n = 30) were elliptical and brown, with a size range of 4.11 to 6.55 µm (average 5.37±0.74 µm) × 3.17 to 4.62 µm (average 3.92±0.43 µm). Chlamydospores (n = 30) formed chains in series, spherical or elliptical in shape, ranging from yellow-brown to dark brown, with a size range of 12.30 to 13.70 µm (average 12.98±0.46 µm) × 4.20 to 5.30 µm (average 4.63±0.26 µm). The nuclear ribosomal internal transcribed spacer region (ITS), the second largest subunit of RNA polymerase II (RPB2), and the 28S nuclear ribosomal large subunit rRNA (LSU) region of two isolates were amplified with the primer pairs ITS1/ITS4 (White et al. 1990), fRPB2-5F/fRPB2-7cR (Liu et al. 1999), and LR0R/LR5 (Schoch et al. 2012), respectively. These amplicons were sequenced bidirectionally and assembled. The two isolates produced the same nucleotide sequences, and the sequences of a representative isolate (AsDp1) were deposited in GenBank. BLASTn analyses showed that the ITS (PP510616), RPB2 (PP526010), and LSU (PP550143) sequences of isolate AsDp1 were 100%, 99.66%, and 100% identical with those of Didymella pomorum ex-type isolate CBS 354.52 (MH857081, KT389616, and MH868616), respectively. A phylogenetic tree was constructed based on the ITS, RPB2, and LSU concatenated nucleotide sequences using the maximum likelihood method in MEGAX. Isolate AsDp1 was clustered with four D. pomorum isolates. According to the morphological and nucleotide sequences analyses, isolate AsDp1 was identified as D. pomorum (Chen et al. 2015). To determine pathogenicity, 1-year-old A. sinensis plants (approximately 20 cm tall) grown in 7-liter pots filled with sterilized field soil were sprayed until runoff with a 1×106 conidia/ml suspension of isolate AsDp1 onto the foliage, while control plants were sprayed with sterile water. All plants were cultivated under a 12-h photoperiod at 25℃. The pathogenicity tests were performed in triplicate with ten plants in each treatment. After fifteen days, numerous chlorotic lesions appeared on the leaves of all inoculated plants. The symptoms were similar to those found on naturally infected plants in the field, while the control plants remained asymptomatic. Subsequently, D. pomorum was reisolated from the diseased leaves, and the identity was confirmed based on its ITS sequence and morphological characteristics. D. pomorum causing stem canker on Rosa spp. was reported in Canada (Ilyukhin 2022). To our knowledge, this is the first report of D. pomorum causing leaf blight on A. sinensis in China. This etiological finding will potentially pave the way for the development of control strategies of this disease.

8.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000284

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is one of the most important infectious diseases that cause high morbidity and mortality in pigs and substantial economic losses to the pork industry of affected countries due to the lack of effective vaccines. The need to develop alternative robust antiviral countermeasures, especially anti-ASFV agents, is of the utmost urgency. This study shows that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid found in the roots of Stephania tetrandra of the family Menispermaceae, significantly inhibits ASFV replication in porcine alveolar macrophages (PAMs) at micromolar concentrations (IC50 = 1.66 µM). Mechanistically, the infection of ASFV triggers the AKT/mTOR/NF-κB signaling pathway. FAN significantly inhibits ASFV-induced activation of such pathways, thereby suppressing viral replication. Such a mechanism was confirmed using an AKT inhibitor MK2206 as it inhibited AKT phosphorylation and ASFV replication in PAMs. Altogether, the results suggest that the AKT/mTOR pathway could potentially serve as a treatment strategy for combating ASFV infection and that FAN could potentially emerge as an effective novel antiviral agent against ASFV infections and deserves further in vivo antiviral evaluations.


Assuntos
Vírus da Febre Suína Africana , Antivirais , Benzilisoquinolinas , Macrófagos Alveolares , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Replicação Viral , Animais , Macrófagos Alveolares/virologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Replicação Viral/efeitos dos fármacos , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Benzilisoquinolinas/farmacologia , Antivirais/farmacologia , Febre Suína Africana/virologia , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/metabolismo
9.
Lab Invest ; 103(12): 100260, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839635

RESUMO

Hepatocellular carcinoma (HCC), one of the most prevalent types of cancer worldwide, has an exceedingly poor prognosis. Tandem C2 domain nuclear protein (TC2N) has been implicated in tumorigenesis and serves as an oncogene or tumor suppressor in different types of cancer. Here, we explore the possible regulatory activities and molecular mechanisms of TC2N in HCC progression. However, TC2N expression was significantly upregulated in HCC tissues and hepatoma cell lines, and this upregulation was positively correlated with tumor progression in HCC patients. The ectopic overexpression of TC2N accelerated the proliferation, migration, and invasion of HCC cells, whereas its knockdown showed the opposite effects. Bioinformatics analysis showed that TC2N participates in the regulation of the Wnt/ß-catenin signaling pathway. Mechanistically, TC2N activated the Wnt/ß-catenin signaling pathway by regulating the expression levels of ß-catenin and its downstream targets CyclinD1, MMP7, c-Myc, c-Jun, AXIN2, and glutamine synthase. Furthermore, the deletion of ß-catenin effectively neutralized the regulation of TC2N in HCC proliferation and metastasis. Overall, this study showed that TC2N promotes HCC proliferation and metastasis by activating the Wnt/ß-catenin signaling pathway, indicating that TC2N might be a potential molecular target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
10.
Hum Reprod ; 38(6): 1036-1046, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018627

RESUMO

STUDY QUESTION: Is sperm telomere length (STL) associated with sperm nuclear DNA damage and mitochondrial DNA abnormalities? SUMMARY ANSWER: Sperm telomere length is related to sperm nuclear DNA integrity and mitochondrial DNA abnormalities in healthy young college students. WHAT IS KNOWN ALREADY: Many studies have revealed the correlations between sperm genetic alterations in both the nucleus and mitochondria and sperm functionality, however, the possible associations between the telomere, an important component of chromosome, and conventional indicators of mitochondrial DNA and nuclear DNA changes have not been investigated. STUDY DESIGN, SIZE, DURATION: A prospective cohort study, Male Reproductive Health in Chongqing College Students (MARHCS), was conducted from June 2013 to June 2015. We pooled data collected from the follow-up study in 2014 and a total of 444 participants were included. PARTICIPANTS/MATERIALS, SETTING, METHODS: STL was measured by quantitative (Q)-PCR. Sperm nuclear DNA integrity was determined using sperm chromatin structure assay (SCSA) and comet assay. Mitochondrial DNA damage was assessed by mitochondrial DNA copy number (mtDNAcn) evaluated with Q-PCR, and mtDNA integrity was determined with long PCR. MAIN RESULTS AND THE ROLE OF CHANCE: The univariable-linear regression analysis revealed that STL was significantly positively correlated with markers of sperm nuclear DNA damage including the DNA fragmentation index (DFI) and comet parameters (the percentage of DNA in the tail, tail length, comet length, and tail moment). Additionally, STL was also significantly positively correlated with mtDNAcn and significantly negatively correlated with mtDNA integrity. After adjustment for potential confounders, these relationships remained appreciable. Moreover, we investigated potential effects of biometric factors, including age, parental age at conception, and BMI on STL and found that STL was increased with paternal age at conception. LIMITATIONS, REASONS FOR CAUTION: A mechanistic explanation of the correlation between STL, sperm nuclear DNA integrity, and mtDNA abnormalities cannot be provided with a cross-sectional study design, so well-designed longitudinal studies are still necessary. In addition, a single semen samples were provided and were not all obtained at the same time point, which may increase the intraindividual bias in this study. WIDER IMPLICATIONS OF THE FINDINGS: The findings extend the literature including assessment of mitochondrial dysfunction, sperm nuclear DNA damage, and telomere length and provide new insights into the relevance of STL in male reproduction. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Natural Science Foundation of China (No. 82073590), the National Natural Science Foundation of China (No. 81903363), the National Natural Science Foundation of China (No. 82130097), and the National Key R&D Program of China (2022YFC2702900). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
DNA Mitocondrial , Sêmen , Humanos , Masculino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Estudos Prospectivos , Seguimentos , Estudos Transversais , Espermatozoides/metabolismo , Análise do Sêmen , Mitocôndrias/genética , Telômero , Estudantes
11.
Toxicol Appl Pharmacol ; 475: 116656, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579952

RESUMO

Telomere and mitochondria may be the targets of Benzo[a]pyrene (BaP) -induced male reproductive damage, and further elucidation of the toxic molecular mechanisms is necessary. In this study, we used in vivo and in vitro exposure models to explore the molecular mechanisms of TERT regulation in BaP-induced telomere and mitochondrial damage in spermatocytes. The results showed that the treatment of benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the active metabolite of BaP, caused telomere dysfunction in mouse spermatocyte-derived GC-2 cells, resulting in S-phase arrest and increased senescence-associated secretory phenotype (SASP). These effects were significantly alleviated by telomerase agonist (ABG) pretreatment in GC-2 cells. SIRT1, FOXO3a, or c-MYC overexpressing GC-2 cell models were established to demonstrate that BPDE inhibited TERT transcriptional expression through the SIRT1/FOXO3a/c-MYC pathway, leading to telomere dysfunction. We also observed that BPDE induced mitochondrial compromise, including complex I damage, accompanied by reduced mitochondrial TERT expression. Based on this, we constructed wild-type TERT-overexpressing (OE-TERTwt) and mitochondria targeting TERT-overexpressing (OE-TERTmst) GC-2 cell models and found that OE-TERTmst GC-2 cells improved mitochondrial function better than OE-TERTwt GC-2 cells. Finally, ICR mice were given BaP by intragastric administration for 35 days, which verified the results of the in vitro study. The results shown that BaP exposure can lead to spermatogenesis disturbance, which is related to the telomere and mitochondrial damage in spermatocytes. In conclusion, our results suggest that BPDE causes telomere and mitochondrial damage in spermatocytes by inhibiting TERT transcription and mitochondrial TERT expression. This study elucidates the molecular mechanism of male reproductive toxicity due to environmental pollutant BaP, and also provides a new perspective for the exploration of interventions and protective measures against male reproductive damage by BaP.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Benzo(a)pireno , Camundongos , Masculino , Animais , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Espermatócitos , Sirtuína 1/metabolismo , Camundongos Endogâmicos ICR , Mitocôndrias
12.
J Org Chem ; 88(16): 12000-12012, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37540765

RESUMO

An I2-DMSO-mediated multicomponent [3+1+2] cascade annulation reaction using aryl methyl ketones, enaminones, and benzo[d]isoxazol-3-amine as substrates has been developed. This metal-free reaction involved the transannulation of benzo[d]isoxazol-3-amines with the formation of two C-N bonds and a C-C bond in one pot. Notably, a pyrimidine ring with a 1,4-dicarbonyl scaffold could efficiently transform into a pyrimido[4,5-d]pyridazine skeleton. The phenolic hydroxyl group of the target product could undergo further modification with pharmaceuticals, demonstrating the utility of this method.

13.
Macromol Rapid Commun ; 44(13): e2300084, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37002643

RESUMO

As a common oxidizer, ammonium perchlorate (AP) is an important component in composite solid propellants (CSPs). Ferrocene (Fc)-based compounds are often selected as burning rate catalysts (BRCs) to catalyze AP decomposition owing to their excellent catalytic behavior. However, one of the drawbacks of Fc-based BRCs is migration in CSPs. In this study, five Fc-terminated dendrimers are designed and synthesized to improve the anti-migration properties, and their chemical structures are confirmed systemically by the related spectra characterization techniques. Moreover, the redox performance, catalytic effect on AP decomposition, combustion performance, and mechanical properties in CSPs are also studied. The shapes of the prepared propellant samples are observed via scanning electron microscopy. The obtained Fc-based BRCs have good redox performance, a positive effect on promoting AP decomposition, excellent combustion catalytic performance, and good mechanical properties. Meanwhile, they have a higher anti-migration ability than catocene (Cat) and Fc. This study demonstrates that Fc-terminated dendrimers have great potential to be applied as anti-migration BRCs in CSPs.


Assuntos
Dendrímeros , Metalocenos , Catálise , Índio
14.
Bioorg Chem ; 133: 106378, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736035

RESUMO

A series of new α-carboline analogues modified at N1 or N9 positions by alkyl, benzyl and phenyl were synthesized and characterized as potential ligands for AD therapy. These compounds exhibited multifunctional neurobiological activities including anti-neuroinflammatory, neuroprotective and cholinesterase inhibition. Among them, compound 5d with good drug-like properties and no cytotoxicity, showed potent inhibitory activity against NO production (IC50 = 1.45 µM), which could suppress the expression levels of iNOS and COX-2 in a dose-dependent manner. Further mechanism exploration indicated that compound 5d could regulate the NF-κB signaling pathway by decreasing the phosphorylation of IκB-α and p65. Notably, compound 5d could effectively decrease the LPS-induced aberrations in zebrafish. Compounds 3b, 4f, 5c, 5g, 5m and 6i exhibited potential neuroprotective activity (cell viability > 70 %) in the H2O2-induced PC-12 neuronal death model and rescued the SOD activity. In particular, compounds 3b, 4f, and 5g activated the Nrf2 signaling pathway, and improved the expressions of antioxidant proteins NQO-1 and HO-1, which alleviated the head cell apoptosis in zebrafish. Additionally, compound 6i exhibited potential inhibitory activity against BuChE with IC50 of 0.77 µM. Overall, this work provided some lead compounds based on α-carboline used for AD therapy.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peixe-Zebra/metabolismo , Peróxido de Hidrogênio , Carbolinas/farmacologia , Carbolinas/uso terapêutico , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo
15.
Environ Toxicol ; 38(12): 2926-2938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565766

RESUMO

Environmental hazards are an increasing concern due to the rapid pace of industrialization. Among these hazards, noise and carbon monoxide (CO) are common risk factors and have been shown to cause serious health problems. However, existing studies focused on the individual effects of noise and CO exposure and the combined effects of these two factors remain poorly understood. Our study aimed to examine the combined effects of noise and CO exposure on testicular function by constructing individual and combined exposure models. Our findings indicated that combined exposure to noise and CO was associated with a higher risk of testicular damage and male reproductive damage when compared to exposure alone. This was evidenced by poorer semen quality and more severe pathological damage to the testis. This combined exposure led to higher levels of oxidative stress and apoptosis in the testes, with bioinformatics analyses suggesting the signaling pathways involved in these responses. Specifically, activation of the P53 signaling pathway was found to contribute to the testicular damage caused by the combined exposure. Encouragingly, pterostilbene (PTE), a novel phytochemical, alleviated combined exposure-induced testicular damage by reducing oxidative stress and germ cell apoptosis. Overall, we identified joint reproductive toxicity resulting from the exposure to noise and CO, and found that PTE is a promising potential treatment for injuries caused by these factors. The cover image is based on the Research Article Effects and possible mechanisms of combined exposure to noise and carbon monoxide on male reproductive system in rats by Yingqing Li et al., https://doi.org/10.1002/tox.23927.


Assuntos
Monóxido de Carbono , Análise do Sêmen , Ratos , Masculino , Animais , Monóxido de Carbono/toxicidade , Testículo , Células Germinativas , Reprodução , Estresse Oxidativo
16.
Biol Reprod ; 107(5): 1360-1373, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35948002

RESUMO

It is controversial whether exposure to isoflavones exerts male reproductive toxicity. The aim of this study was to investigate whether isoflavone exposure during adulthood could have deleterious impacts on male reproductive health by the cross-sectional study, animal experiments, and in vitro tests. In the cross-sectional study, we observed that urinary isoflavones were not significantly associated with semen quality including sperm concentrations, sperm count, progressive motility, and total motility, respectively. However, negative associations were found between plasma testosterone and urinary Σisoflavones, genistein, glycitein, and dihydrodaidzein. In the animal experiments, serum and intratesticular testosterone levels were decreased in mice exposed to several dosages of genistein. Genistein administration caused upregulation of estrogen receptor alpha and downregulation of cytochrome P45017A1 protein levels in testes of mice. In vitro tests showed that genistein caused a concentration-dependent inhibition of testosterone production by TM3 Leydig cells. Elevated protein expression of estrogen receptor alpha and decreased messenger RNA/protein level of cytochrome P45017A1 were also observed in genistein-treated cells. Protein level of cytochrome P45017A1 and testosterone concentration were significantly restored in the estrogen receptor alpha small interferring RNA-transfected cells, compared to cells that treated with genistein alone. The results demonstrate that exposure to isoflavones during adulthood may be associated with alterations of reproductive hormones. Particularly, genistein, which inhibits testosterone biosynthesis through upregulation of estrogen receptor alpha in Leydig cells of mice, might induce the disruption of testosterone production in human. The present study provides novel perspective into potential targets for male reproductive compromise induced by isoflavone exposure.


Assuntos
Genisteína , Isoflavonas , Humanos , Adulto , Masculino , Camundongos , Animais , Genisteína/toxicidade , Receptor alfa de Estrogênio , Análise do Sêmen , Estudos Transversais , Sêmen , Isoflavonas/efeitos adversos , Testosterona , Citocromos
17.
J Transl Med ; 20(1): 444, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184616

RESUMO

BACKGROUND: Adrenocortical carcinoma (ACC) is an extremely rare, aggressive tumor with few effective therapeutic options or drugs. Mitotane (Mtn), which is the only authorized therapeutic drug, came out in 1970 and is still the only first-line treatment for ACC in spite of serious adverse reaction and a high recurrence rate. METHODS: By in silico analysis of the ACC dataset in the cancer genome atlas (TCGA), we determined that high expression levels of cyclin-dependent kinase-1 (CDK1) were significantly related to the adverse clinical outcomes of ACC. In vitro and in vivo experiments were performed to evaluate the role of CDK1 in ACC progression through gain and loss of function assays in ACC cells. CDK1 inhibitors were screened to identify potential candidates for the treatment of ACC. RNA sequencing, co-immunoprecipitation, and immunofluorescence assays were used to elucidate the mechanism. RESULTS: Overexpression of CDK1 in ACC cell lines promoted proliferation and induced the epithelial-to-mesenchymal transition (EMT), whereas knockdown of CDK1 expression inhibited growth of ACC cell lines. The CDK1 inhibitor, cucurbitacin E (CurE), had the best inhibitory effect with good time-and dose-dependent activity both in vitro and in vivo. CurE had a greater inhibitory effect on ACC xenografts in nude mice than mitotane, without obvious adverse effects. Most importantly, combined treatment with CurE and mitotane almost totally eliminated ACC tumors. With respect to mechanism, CDK1 facilitated the EMT of ACC cells via Slug and Twist and locked ACC cells into the G2/M checkpoint through interaction with UBE2C and AURKA/B. CDK1 also regulated pyroptosis, apoptosis, and necroptosis (PANoptosis) of ACC cells through binding with the PANoptosome in a ZBP1-dependent way. CONCLUSIONS: CDK1 could be exploited as an essential therapeutic target of ACC via regulating the EMT, the G2/M checkpoint, and PANoptosis. Thus, CurE may be a potential candidate drug for ACC therapy with good safety and efficacy, which will meet the great need of patients with ACC.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Animais , Apoptose , Aurora Quinase A/genética , Aurora Quinase A/farmacologia , Aurora Quinase A/uso terapêutico , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/farmacologia , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Camundongos Nus , Mitotano/farmacologia , Mitotano/uso terapêutico , Necroptose , Piroptose , Proteínas de Ligação a RNA
18.
Plant Physiol ; 186(2): 1186-1201, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33693800

RESUMO

As day-neutral (DN) woody perennial plants, the flowering time of roses (Rosa spp.) is assumed to be independent of the photoperiodic conditions; however, light responses of rose plants are not well understood. Chinese rose (Rosa chinensis) plants were grown under two light intensities (low light [LL], 92 µmol·m-2·s-1; or high light [HL], 278 µmol·m-2·s-1), and either with or without an end-of-day far-red (EOD-FR) treatment. Flowering was significantly delayed in the LL condition compared with the HL, but was not affected by EOD-FR treatment. The time until flowering positively corresponded with the mRNA and protein levels of phytochrome-interacting factors (PIFs; RcPIFs). The heterologous expression of RcPIF1, RcPIF3, or RcPIF4 in the Arabidopsis (Arabidopsis thaliana) pifq quadruple mutant partially rescued the mutant's shorter hypocotyl length. Simultaneous silencing of three RcPIFs in R. chinensis accelerated flowering under both LL and HL, with a more robust effect in LL, establishing RcPIFs as flowering suppressors in response to light intensity. The RcPIFs interacted with the transcription factor CONSTANS (RcCO) to form a RcPIFs-RcCO complex, which interfered with the binding of RcCO to the promoter of FLOWERING LOCUS T (RcFT), thereby inhibiting its expression. Furthermore, this inhibition was enhanced when RcPIFs were stabilized by LL, leading to delayed flowering under LL compared with HL. Our results not only revealed another layer of PIF functioning in the flowering of woody perennial plants, but also established a mechanism of light response in DN plants.


Assuntos
Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Rosa/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Flores/genética , Flores/fisiologia , Flores/efeitos da radiação , Expressão Gênica , Hipocótilo/genética , Hipocótilo/fisiologia , Hipocótilo/efeitos da radiação , Mutação , Fotoperíodo , Proteínas de Plantas/genética , Rosa/fisiologia , Rosa/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes
19.
Pharmacol Res ; 181: 106259, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577307

RESUMO

Lung cancer is by far the leading cause of cancer death worldwide, and 85% of patients are diagnosed with non-small cell lung cancer (NSCLC), which is still very difficult to treat. Skp2 functions as an oncogene that participates in processes of many cancers. Here, we report a novel Skp2 inhibitor AAA-237 that binds to Skp2 protein and inhibits the proliferation of the NSCLC cells. We further investigated the anti-NSCLC mechanism of AAA-237 and found that it arrested the cell cycle at the G0/G1 phase by targeting Skp2 to reduce the degradation of p21Cip1 and p27Kip1 or by transcriptionally activating FOXO1 to increase the mRNA expression of p21Cip1 and p27Kip1. More importantly, we found that treatment of a high concentration AAA-237 could induce apoptosis of NSCLC cells and treatment of a low AAA-237 concentration for a longer time could induce senescence of NSCLC cells. Similar results were found in nude mice xenografted with A549 cells. AAA-237 inhibited tumor growth by inducing apoptosis and senescence in a dose-dependent manner. Considering these results, we propose that AAA-237 could be a promising therapeutic drug for treating patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Pontos de Checagem do Ciclo Celular , Neoplasias Pulmonares , Proteínas Quinases Associadas a Fase S , Células A549 , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fase G1 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores
20.
Pharmacol Res ; 183: 106376, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914680

RESUMO

Apolipoprotein C1 (APOC1) has been found to play an essential part in proliferation and metastasis of numerous cancers, but related mechanism has not been elucidated, especially its function and role in tumor immunity. Through systematic pan-cancer analysis, we identified that APOC1 was closely associated with the infiltration of various immune cells in multiple cancers. Besides, APOC1 was significantly co-expressed with the immune checkpoints, major histocompatibility complex (MHC) molecules, chemokines and other immune-related genes. Furthermore, single-cell sequencing analysis suggested that the vast majority of APOC1 was expressed in macrophages or tumor-associated macrophages (TAMs). Additionally, the expression of APOC1 was significantly related to the prognosis of different cancers. Since APOC1 was most significantly abnormally expressed in renal cell cancer (RCC), subsequent experiments were carried out in RCC to explore the role of APOC1 in tumor immunity. The expression of APOC1 was significantly elevated in the tumor and serum of RCC patients. Besides, APOC1 was mainly expressed in the macrophage and it was closely related to the immune cell infiltration of RCC. Co-culture with RCC cells could induce the generation of TAMs with M2 phenotype which be blocked by silencing APOC1. The expression of APOC1 was elevated in the M2 or TAMs and APOC1 promoted M2 polarization of macrophages through interacting with CD163 and CD206. Furthermore, macrophages overexpressing APOC1 promoted the metastasis of RCC cells via secreting CCL5. Together, these data indicate that APOC1 is an immunological biomarker which regulates macrophage polarization and promotes tumor metastasis.


Assuntos
Apolipoproteína C-I , Carcinoma de Células Renais , Neoplasias Renais , Ativação de Macrófagos , Apolipoproteína C-I/genética , Apolipoproteína C-I/metabolismo , Biomarcadores/metabolismo , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/metabolismo , Macrófagos/metabolismo , Metástase Neoplásica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA