Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 61(11): 1031-1039, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39237363

RESUMO

OBJECTIVES: Mutations in the X-linked endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome (CS). Here, in the largest study to date, we examine genetic diversity and clinical progression in CS into adulthood. METHOD: Data were collected as part of the International Christianson Syndrome and NHE6 (SLC9A6) Gene Network Study. 44 individuals with 31 unique NHE6 mutations, age 2-32 years, were followed prospectively, herein reporting baseline, 1 year follow-up and retrospective natural history. RESULTS: We present data on the CS phenotype with regard to physical growth and adaptive and motor regression across the lifespan including information on mortality. Longitudinal data on body weight and height were examined using a linear mixed model. The rate of growth across development was slow and resulted in prominently decreased age-normed height and weight by adulthood. Adaptive functioning was longitudinally examined; a majority of adult participants (18+ years) lost gross and fine motor skills over a 1 year follow-up. Previously defined core diagnostic criteria for CS (present in>85%)-namely non-verbal status, intellectual disability, epilepsy, postnatal microcephaly, ataxia, hyperkinesia-were universally present in age 6-16; however, an additional core feature of high pain tolerance was added (present in 91%). While neurologic examinations were consistent with cerebellar dysfunction, importantly, a majority of individuals (>50% older than 10) also had corticospinal tract abnormalities. Three participants died during the period of the study. CONCLUSIONS: In this large and longitudinal study of CS, we begin to define the trajectory of symptoms and the adult phenotype thereby identifying critical targets for treatment.


Assuntos
Deficiência Intelectual , Microcefalia , Mutação , Trocadores de Sódio-Hidrogênio , Humanos , Adolescente , Adulto , Estudos Longitudinais , Masculino , Criança , Trocadores de Sódio-Hidrogênio/genética , Feminino , Adulto Jovem , Pré-Escolar , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/genética , Microcefalia/patologia , Ataxia/genética , Ataxia/patologia , Ataxia/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Fenótipo , Transtornos da Motilidade Ocular/genética , Transtornos da Motilidade Ocular/fisiopatologia , Hipogonadismo/genética , Hipogonadismo/patologia , Epilepsia
2.
Neurobiol Dis ; 193: 106457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423191

RESUMO

Epilepsy is a brain disorder affecting up to 1 in 26 individuals. Despite its clinical importance, the molecular mechanisms of epileptogenesis are still far from clarified. Our previous study showed that disruption of Clock in excitatory neurons alters cortical circuits and leads to generation of focal epilepsy. In this study, a GAD-Cre;Clockflox/flox mouse line with conditional Clock gene knockout in inhibitory neurons was established. We observed that seizure latency was prolonged, the severity and mortality of pilocarpine-induced seizure were significantly reduced, and memory was improved in GAD-Cre;Clockflox/flox mice. We hypothesize that mice with CLOCK knockout in inhibitory neurons have increased threshold for seizure, opposite from mice with CLOCK knockout in excitatory neurons. Further investigation showed Clock knockout in inhibitory neurons upregulated the basal protein level of ARC, a synaptic plasticity-associated immediate-early gene product, likely through the BDNF-ERK pathway. Altered basal levels of ARC may play an important role in epileptogenesis after Clock deletion in inhibitory neurons. Although sEPSCs and intrinsic properties of layer 5 pyramidal neurons in the somatosensory cortex exhibit no changes, the spine density increased in apical dendrite of pyramidal neurons in CLOCK knockout group. Our results suggest an underlying mechanism by which the circadian protein CLOCK in inhibitory neurons participates in neuronal activity and regulates the predisposition to epilepsy.


Assuntos
Epilepsia , Animais , Camundongos , Ansiedade , Suscetibilidade a Doenças/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Convulsões/metabolismo
3.
Mass Spectrom Rev ; 42(5): 1508-1534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34435381

RESUMO

Diagnostic gas-phase ion-molecule reactions serve as a powerful alternative to collision-activated dissociation for the structural elucidation of analytes when using tandem mass spectrometry. The use of such ion-molecule reactions has been demonstrated to provide a robust tool for the identification of specific functional groups in unknown ionized analytes, differentiation of isomeric ions, and classification of unknown ions into different compound classes. During the past several years, considerable efforts have been dedicated to exploring various reagents and reagent inlet systems for functional-group selective ion-molecule reactions with protonated analytes. This review provides a comprehensive coverage of literature since 2006 on general and predictable functional-group selective ion-molecule reactions of protonated analytes, including simple monofunctional and complex polyfunctional analytes, whose mechanisms have been explored computationally. Detection limits for experiments involving high-performance liquid chromatography coupled with tandem mass spectrometry based on ion-molecule reactions and the application of machine learning to predict diagnostic ion-molecule reactions are also discussed.

4.
Mol Psychiatry ; 27(4): 2291-2303, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35210569

RESUMO

Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.


Assuntos
Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase , Proteínas de Ligação a DNA/genética , Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neurônios/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(38): 23374-23379, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32878996

RESUMO

Alkanes and [B12X12]2- (X = Cl, Br) are both stable compounds which are difficult to functionalize. Here we demonstrate the formation of a boron-carbon bond between these substances in a two-step process. Fragmentation of [B12X12]2- in the gas phase generates highly reactive [B12X11]- ions which spontaneously react with alkanes. The reaction mechanism was investigated using tandem mass spectrometry and gas-phase vibrational spectroscopy combined with electronic structure calculations. [B12X11]- reacts by an electrophilic substitution of a proton in an alkane resulting in a B-C bond formation. The product is a dianionic [B12X11CnH2n+1]2- species, to which H+ is electrostatically bound. High-flux ion soft landing was performed to codeposit [B12X11]- and complex organic molecules (phthalates) in thin layers on surfaces. Molecular structure analysis of the product films revealed that C-H functionalization by [B12X11]- occurred in the presence of other more reactive functional groups. This observation demonstrates the utility of highly reactive fragment ions for selective bond formation processes and may pave the way for the use of gas-phase ion chemistry for the generation of complex molecular structures in the condensed phase.

6.
J Neurosci ; 41(44): 9235-9256, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34526390

RESUMO

Loss-of-function mutations in endosomal Na+/H+ exchanger 6 (NHE6) cause the X-linked neurologic disorder Christianson syndrome. Patients exhibit symptoms associated with both neurodevelopmental and neurodegenerative abnormalities. While loss of NHE6 has been shown to overacidify the endosome lumen, and is associated with endolysosome neuropathology, NHE6-mediated mechanisms in endosome trafficking and lysosome function have been understudied. Here, we show that NHE6-null mouse neurons demonstrate worsening lysosome function with time in culture, likely as a result of defective endosome trafficking. NHE6-null neurons exhibit overall reduced lysosomal proteolysis despite overacidification of the endosome and lysosome lumen. Akin to Nhx1 mutants in Saccharomyces cerevisiae, we observe decreased endosome-lysosome fusion in NHE6-null neurons. Also, we find premature activation of pH-dependent cathepsin D (CatD) in endosomes. While active CatD is increased in endosomes, CatD activation and CatD protein levels are reduced in the lysosome. Protein levels of another mannose 6-phosphate receptor (M6PR)-dependent enzyme, ß-N-acetylglucosaminidase, were also decreased in lysosomes of NHE6-null neurons. M6PRs accumulate in late endosomes, suggesting defective M6PR recycling and retromer function in NHE6-null neurons. Finally, coincident with decreased endosome-lysosome fusion, using total internal reflection fluorescence, we also find a prominent increase in fusion between endosomal multivesicular bodies and the plasma membrane, indicating enhanced exosome secretion from NHE6-null neurons. In summary, in addition to overacidification of endosomes and lysosomes, loss of NHE6 leads to defects in endosome maturation and trafficking, including enhanced exosome release, contributing to lysosome deficiency and potentially leading to neurodegenerative disease.SIGNIFICANCE STATEMENT Loss-of-function mutations in the endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome, an X-linked neurologic disorder. Loss of NHE6 has been shown to overacidify endosomes; however, endosome trafficking mechanisms have been understudied, and the mechanisms leading to neurodegeneration are largely unknown. In NHE6-null mouse neurons in vitro, we find worsening lysosome function with days in culture. Notably, pH-dependent lysosome enzymes, such as cathepsin D, have reduced activity in lysosomes yet increased, precocious activity in endosomes in NHE6-null neurons. Further, endosomes show reduced fusion to lysosomes, and increased fusion to the plasma membrane with increased exosome release. This study identifies new mechanisms involving defective endosome maturation and trafficking that impair lysosome function in Christianson syndrome, likely contributing to neurodegeneration.


Assuntos
Ataxia/genética , Endossomos/metabolismo , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Mutação com Perda de Função , Lisossomos/metabolismo , Microcefalia/genética , Neurônios/metabolismo , Transtornos da Motilidade Ocular/genética , Trocadores de Sódio-Hidrogênio/genética , Animais , Catepsina D/metabolismo , Células Cultivadas , Hipocampo/citologia , Camundongos , Transporte Proteico , Proteólise , Trocadores de Sódio-Hidrogênio/deficiência , Trocadores de Sódio-Hidrogênio/metabolismo
7.
Anal Chem ; 94(40): 13795-13803, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154017

RESUMO

N-Nitrosamines are strictly regulated in pharmaceutical products due to their carcinogenic nature. Therefore, the ability to rapidly and reliably identify the N-nitroso functionality is urgently needed. Unfortunately, not all ionized N-nitroso compounds produce diagnostic fragment ions and hence tandem mass spectrometry based on collision-activated dissociation (CAD) cannot be used to consistently identify the N-nitroso functionality. Therefore, a more reliable method was developed based on diagnostic functional-group selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer. 2-Methoxypropene (MOP) was identified as a reagent that reacts with protonated N-nitrosamines in a diagnostic manner by forming an adduct followed by the elimination of 2-propenol (CH3C(OH)═CH2]). From 18 protonated N-nitrosamine model compounds studied, 15 formed the diagnostic product ion. The lack of the diagnostic reaction for three of the N-nitrosamine model compounds was rationalized based on the presence of a pyridine ring that gets preferentially protonated instead of the N-nitroso functionality. These N-nitrosamines can be identified by subjecting a stable adduct formed upon ion-molecule reactions with MOP to CAD. Further, the ability to use ion-molecule reactions followed by CAD to differentiate protonated O-nitroso compounds with a pyridine ring from analogous N-nitrosamines was demonstrated This methodology is considered to be robust for the identification of the N-nitroso functionality in unknown analytes. Lastly, HPLC/MS2 experiments were performed to determine the detection limit for five FDA regulated N-nitrosamines.


Assuntos
Nitrosaminas , Espectrometria de Massas em Tandem , Íons/química , Preparações Farmacêuticas , Piridinas , Espectrometria de Massas em Tandem/métodos
8.
Phys Chem Chem Phys ; 24(36): 21759-21772, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36097953

RESUMO

The highly reactive gaseous ion [B12Br11]- is a metal-free closed-shell anion which spontaneously forms covalent bonds with hydrocarbon molecules, including alkanes. Herein, we systematically investigate the reaction mechanism for binding of [B12Br11]- to the five hexane isomers yielding [B12Br11(C6H14)]-, as well as to cyclohexane and several hexene isomers (yielding [B12Br11(C6H12)]-) using collision-induced dissociation (CID), infrared photodissociation spectroscopy (IRPD) and computational methods. CID of the different [B12Br11(C6H14)]- ions results in distinct fragmentation patterns dependent on the structure of the hexane isomer. The observed fragmentation reactions provide insights into the addition mechanism of [B12Br11]- to hexane. Based on the observed CID patterns, we identified that either B-C bond formation through heterolytic C-C or C-H bond cleavages or B-H bond formation through heterolytic C-H cleavage occur dependent on the structure of the hexane isomer. Meanwhile, we observe identical CID spectra of adducts originating from isomers of C6H12. Spectroscopic investigations of adducts of 1-hexene and cyclohexane indicate the same product structure with an open C6 chain. Computational investigations evidenced that low lying transition states are present, which enable a ring opening reaction of cyclohexane when binding to [B12Br11]-.

9.
Epilepsia ; 62 Suppl 1: S32-S48, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33395505

RESUMO

Extensive study has demonstrated that epilepsy occurs with greater frequency at certain times in the 24-h cycle. Although these findings implicate an overlap between the circadian rhythm and epilepsy, the molecular and cellular mechanisms underlying this circadian regulation are poorly understood. Because the 24-h rhythm is generated by the circadian molecular system, it is not surprising that this system comprised of many circadian genes is implicated in epilepsy. We summarized evidence in the literature implicating various circadian genes such as Clock, Bmal1, Per1, Rev-erb⍺, and Ror⍺ in epilepsy. In various animal models of epilepsy, the circadian oscillation and the steady-state level of these genes are disrupted. The downstream pathway of these genes involves a large number of metabolic pathways associated with epilepsy. These pathways include pyridoxal metabolism, the mammalian target of rapamycin pathway, and the regulation of redox state. We propose that disruption of these metabolic pathways could mediate the circadian regulation of epilepsy. A greater understanding of the cellular and molecular mechanism of circadian regulation of epilepsy would enable us to precisely target the circadian disruption in epilepsy for a novel therapeutic approach.


Assuntos
Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Epilepsia/genética , Epilepsia/metabolismo , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Proteínas CLOCK/genética , Ritmo Circadiano/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Epilepsia/tratamento farmacológico , Humanos , RNA Mensageiro/genética
10.
Mol Cell ; 47(5): 707-21, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22857951

RESUMO

Doublecortin (Dcx) defines a growing family of microtubule (MT)-associated proteins (MAPs) involved in neuronal migration and process outgrowth. We show that Dcx is essential for the function of Kif1a, a kinesin-3 motor protein that traffics synaptic vesicles. Neurons lacking Dcx and/or its structurally conserved paralogue, doublecortin-like kinase 1 (Dclk1), show impaired Kif1a-mediated transport of Vamp2, a cargo of Kif1a, with decreased run length. Human disease-associated mutations in Dcx's linker sequence (e.g., W146C, K174E) alter Kif1a/Vamp2 transport by disrupting Dcx/Kif1a interactions without affecting Dcx MT binding. Dcx specifically enhances binding of the ADP-bound Kif1a motor domain to MTs. Cryo-electron microscopy and subnanometer-resolution image reconstruction reveal the kinesin-dependent conformational variability of MT-bound Dcx and suggest a model for MAP-motor crosstalk on MTs. Alteration of kinesin run length by MAPs represents a previously undiscovered mode of control of kinesin transport and provides a mechanism for regulation of MT-based transport by local signals.


Assuntos
Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Quinases Semelhantes a Duplacortina , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Microtúbulos/metabolismo , Neurônios/citologia , Neuropeptídeos/deficiência , Proteínas Serina-Treonina Quinases/deficiência
11.
J Biol Chem ; 293(49): 18890-18902, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30291144

RESUMO

Doublecortin (DCX) is a protein needed for cortical development, and DCX mutations cause cortical malformations in humans. The microtubule-binding activity of DCX is well-described and is important for its function, such as supporting neuronal migration and dendrite growth during development. Previous work showed that microtubule binding is not sufficient for DCX-mediated promotion of dendrite growth and that domains in DCX's C terminus are also required. The more C-terminal regions of DCX bind several other proteins, including the adhesion receptor neurofascin and clathrin adaptors. We recently identified a role for DCX in endocytosis of neurofascin. The disease-associated DCX-G253D mutant protein is known to be deficient in binding neurofascin, and we now asked if disruption of neurofascin endocytosis underlies the DCX-G253D-associated pathology. We first demonstrated that DCX functions in endocytosis as a complex with both the clathrin adaptor AP-2 and neurofascin: disrupting either clathrin adaptor binding (DCX-ALPA) or neurofascin binding (DCX-G253D) decreased neurofascin endocytosis in primary neurons. We then investigated a known function for DCX, namely, increasing dendrite growth in cultured neurons. Surprisingly, we found that the DCX-ALPA and DCX-G253D mutants yield distinct dendrite phenotypes. Unlike DCX-ALPA, DCX-G253D caused a dominant-negative dendrite growth phenotype. The endocytosis defect of DCX-G253D thus was separable from its detrimental effects on dendrite growth. We recently identified Dcx-R59H as a dominant allele and can now classify Dcx-G253D as a second Dcx allele that acts dominantly to cause pathology, but does so via a different mechanism.


Assuntos
Dendritos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Neurônios/citologia , Neuropeptídeos/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Sítios de Ligação , Células COS , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Dendritos/genética , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Endocitose/genética , Células HEK293 , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Ratos
12.
Hum Mol Genet ; 26(22): 4506-4518, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28973395

RESUMO

Hypomyelinating leukodystrophies are heritable disorders defined by lack of development of brain myelin, but the cellular mechanisms of hypomyelination are often poorly understood. Mutations in TUBB4A, encoding the tubulin isoform tubulin beta class IVA (Tubb4a), result in the symptom complex of hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC). Additionally, TUBB4A mutations are known to result in a broad phenotypic spectrum, ranging from primary dystonia (DYT4), isolated hypomyelination with spastic quadriplegia, and an infantile onset encephalopathy, suggesting multiple cell types may be involved. We present a study of the cellular effects of TUBB4A mutations responsible for H-ABC (p.Asp249Asn), DYT4 (p.Arg2Gly), a severe combined phenotype with hypomyelination and encephalopathy (p.Asn414Lys), as well as milder phenotypes causing isolated hypomyelination (p.Val255Ile and p.Arg282Pro). We used a combination of histopathological, biochemical and cellular approaches to determine how these different mutations may have variable cellular effects in neurons and/or oligodendrocytes. Our results demonstrate that specific mutations lead to either purely neuronal, combined neuronal and oligodendrocytic or purely oligodendrocytic defects that closely match their respective clinical phenotypes. Thus, the DYT4 mutation that leads to phenotypes attributable to neuronal dysfunction results in altered neuronal morphology, but with unchanged tubulin quantity and polymerization, with normal oligodendrocyte morphology and myelin gene expression. Conversely, mutations associated with isolated hypomyelination (p.Val255Ile and p.Arg282Pro) and the severe combined phenotype (p.Asn414Lys) resulted in normal neuronal morphology but were associated with altered oligodendrocyte morphology, myelin gene expression, and microtubule dysfunction. The H-ABC mutation (p.Asp249Asn) that exhibits a combined neuronal and myelin phenotype had overlapping cellular defects involving both neuronal and oligodendrocyte cell types in vitro. Only mutations causing hypomyelination phenotypes showed altered microtubule dynamics and acted through a dominant toxic gain of function mechanism. The DYT4 mutation had no impact on microtubule dynamics suggesting a distinct mechanism of action. In summary, the different clinical phenotypes associated with TUBB4A reflect the selective and specific cellular effects of the causative mutations. Cellular specificity of disease pathogenesis is relevant to developing targeted treatments for this disabling condition.


Assuntos
Neurônios/patologia , Oligodendroglia/patologia , Tubulina (Proteína)/genética , Adolescente , Adulto , Atrofia/patologia , Gânglios da Base/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Catarata/congênito , Catarata/genética , Catarata/metabolismo , Catarata/patologia , Cerebelo/patologia , Criança , Pré-Escolar , Feminino , Células HeLa , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/metabolismo , Leucodistrofia Metacromática/patologia , Imageamento por Ressonância Magnética , Masculino , Microtúbulos/patologia , Pessoa de Meia-Idade , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Fenótipo , Tubulina (Proteína)/metabolismo , Adulto Jovem
13.
Hum Genet ; 138(10): 1183-1200, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31471722

RESUMO

The glutamate pyruvate transaminase 2 (GPT2) gene produces a nuclear-encoded mitochondrial enzyme that catalyzes the reversible transfer of an amino group from glutamate to pyruvate, generating alanine and alpha-ketoglutarate. Recessive mutations in GPT2 have been recently identified in a new syndrome involving intellectual and developmental disability (IDD), postnatal microcephaly, and spastic paraplegia. We have identified additional families with recessive GPT2 mutations and expanded the phenotype to include small stature. GPT2 loss-of-function mutations were identified in four families, nine patients total, including: a homozygous mutation in one child [c.775T>C (p.C259R)]; compound heterozygous mutations in two siblings [c.812A>C (p.N271T)/c.1432_1433delGT (p.V478Rfs*73)]; a novel homozygous, putative splicing mutation [c.1035C>T (p.G345=)]; and finally, a recurrent mutation, previously identified in a distinct family [c.1210C>T (p.R404*)]. All patients were diagnosed with IDD. A majority of patients had remarkably small stature throughout development, many < 1st percentile for height and weight. Given the potential biological function of GPT2 in cellular growth, this phenotype is strongly suggestive of a newly identified clinical susceptibility. Further, homozygous GPT2 mutations manifested in at least 2 of 176 families with IDD (approximately 1.1%) in a Pakistani cohort, thereby representing a relatively common cause of recessive IDD in this population, with recurrence of the p.R404* mutation in this population. Based on variants in the ExAC database, we estimated that approximately 1 in 248 individuals are carriers of moderately or severely deleterious variants in GPT2.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Genes Recessivos , Predisposição Genética para Doença , Mutação , Fenótipo , Transaminases/genética , Adolescente , Alelos , Substituição de Aminoácidos , Deficiências do Desenvolvimento/metabolismo , Ativação Enzimática , Éxons , Feminino , Frequência do Gene , Estudos de Associação Genética , Genética Populacional , Genótipo , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Linhagem , Conformação Proteica , Sítios de Splice de RNA , Análise de Sequência de DNA , Relação Estrutura-Atividade , Transaminases/química , Transaminases/metabolismo
14.
Am J Med Genet A ; 179(11): 2284-2291, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31403263

RESUMO

Aspartate-glutamate carrier 1 (AGC1) is one of two exchangers within the malate-aspartate shuttle. AGC1 is encoded by the SLC25A12 gene. Three patients with pathogenic variants in SLC25A12 have been reported in the literature. These patients were clinically characterized by neurodevelopmental delay, epilepsy, hypotonia, cerebral atrophy, and hypomyelination; however, there has been discussion in the literature as to whether this hypomyelination is primary or secondary to a neuronal defect. Here we report a 12-year-old patient with variants in SLC25A12 and magnetic resonance imaging (MRI) at multiple ages. Novel compound heterozygous, recessive variants in SLC25A12 were identified: c.1295C>T (p.A432V) and c.1447-2_1447-1delAG. Clinical presentation is characterized by severe intellectual disability, nonambulatory, nonverbal status, hypotonia, epilepsy, spastic quadriplegia, and a happy disposition. The serial neuroimaging findings are notable for cerebral atrophy with white matter involvement, namely, early hypomyelination yet subsequent progression of myelination. The longitudinal MRI findings are most consistent with a leukodystrophy of the leuko-axonopathy category, that is, white matter abnormalities that are most suggestive of mechanisms that result from primary neuronal defects. We present here the first case of a patient with compound heterozygous variants in SLC25A12, including brain MRI findings, in the oldest individual reported to date with this neurogenetic condition.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Imageamento por Ressonância Magnética , Proteínas de Transporte da Membrana Mitocondrial/genética , Fenótipo , Criança , Análise Mutacional de DNA , Diagnóstico Diferencial , Progressão da Doença , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Moleculares , Linhagem , Conformação Proteica , Relação Estrutura-Atividade
15.
Ann Neurol ; 82(1): 121-127, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28556287

RESUMO

To characterize the mechanism of Zika virus (ZIKV)-associated microcephaly, we performed immunolabeling on brain tissue from a 20-week fetus with intrauterine ZIKV infection. Although ZIKV demonstrated a wide range of neuronal and non-neuronal tropism, the infection rate was highest in intermediate progenitor cells and immature neurons. Apoptosis was observed in both infected and uninfected bystander cortical neurons, suggesting a role for paracrine factors in induction of neuronal apoptosis. Our results highlight differential neuronal susceptibility and neuronal apoptosis as potential mechanisms in the development of ZIKV-associated microcephaly, and may provide insights into the design and best timing of future therapy. Ann Neurol 2017;82:121-127.


Assuntos
Feto/patologia , Feto/virologia , Neurônios/patologia , Neurônios/virologia , Infecção por Zika virus/patologia , Apoptose , Encéfalo/patologia , Encéfalo/virologia , Suscetibilidade a Doenças , Humanos , Infecção por Zika virus/virologia
16.
Ann Neurol ; 76(4): 581-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044251

RESUMO

OBJECTIVE: Recently, Christianson syndrome (CS) has been determined to be caused by mutations in the X-linked Na(+) /H(+) exchanger 6 (NHE6). We aimed to determine the diagnostic criteria and mutational spectrum for CS. METHODS: Twelve independent pedigrees (14 boys, age = 4-19 years) with mutations in NHE6 were administered standardized research assessments, and mutations were characterized. RESULTS: The mutational spectrum was composed of 9 single nucleotide variants, 2 indels, and 1 copy number variation deletion. All mutations were protein-truncating or splicing mutations. We identified 2 recurrent mutations (c.1498 c>t, p.R500X; and c.1710 g>a, p.W570X). Otherwise, all mutations were unique. In our study, 7 of 12 mutations (58%) were de novo, in contrast to prior literature wherein mutations were largely inherited. We also report prominent neurological, medical, and behavioral symptoms. All CS participants were nonverbal and had intellectual disability, epilepsy, and ataxia. Many had prior diagnoses of autism and/or Angelman syndrome. Other neurologic symptoms included eye movement abnormalities (79%), postnatal microcephaly (92%), and magnetic resonance imaging evidence of cerebellar atrophy (33%). Regression was noted in 50%, with recurrent presentations involving loss of words and/or the ability to walk. Medical symptoms, particularly gastrointestinal symptoms, were common. Height and body mass index measures were below normal ranges in most participants. Behavioral symptoms included hyperkinetic behavior (100%), and a majority exhibited high pain threshold. INTERPRETATION: This is the largest cohort of independent CS pedigrees reported. We propose diagnostic criteria for CS. CS represents a novel neurogenetic disorder with general relevance to autism, intellectual disability, Angelman syndrome, epilepsy, and regression.


Assuntos
Ataxia/complicações , Ataxia/genética , Deficiências do Desenvolvimento/genética , Epilepsia/complicações , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Microcefalia/complicações , Microcefalia/genética , Mutação/genética , Transtornos da Motilidade Ocular/complicações , Transtornos da Motilidade Ocular/genética , Trocadores de Sódio-Hidrogênio/genética , Adolescente , Ataxia/patologia , Transtorno Autístico/etiologia , Transtorno Autístico/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Progressão da Doença , Eletroencefalografia , Epilepsia/etiologia , Epilepsia/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Humanos , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Masculino , Microcefalia/patologia , Transtornos da Motilidade Ocular/patologia , Fenótipo , Análise de Regressão , Adulto Jovem
17.
J Neurosci ; 33(2): 709-21, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303949

RESUMO

Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.


Assuntos
Actinas/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Neurofilamentos/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Proteína 3 Relacionada a Actina/metabolismo , Actinina/metabolismo , Actinas/metabolismo , Animais , Axônios/fisiologia , Western Blotting , Células Cultivadas , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/fisiologia , Bases de Dados Factuais , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Eletroforese em Gel de Poliacrilamida , Feminino , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Proteômica
18.
J Autism Dev Disord ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136901

RESUMO

We compared the epilepsy phenotypes in children with genetically defined versus undefined autism spectrum disorder (ASD). A single-center retrospective study was conducted to investigate diagnostic yields of different genetic testing for children with ASD. Patients with at least one testing modality were included and classified as having genetically defined ASD or not based on updated genotype-phenotype correlation. Of the 523 patients included, 79 (15.1%) had results explaining their ASD diagnosis. WES (whole exome sequencing) outperformed CMA (chromosomal microarray) on diagnostic yield (23.0% versus 8.3%). Compared to those with non-diagnostic test(s), children with genetically defined ASD were associated with higher rates for microcephaly, hypotonia, dysmorphic features, and developmental delay/regression. The prevalence of epilepsy was significantly higher in children with genetically defined ASD than those without a genetic diagnosis (35.4% versus 16.4%, p < 0.001, power = 0.97). Furthermore, children with genetically defined ASD had a younger age of epilepsy onset (median 2.2 versus 5.0 years, p = 0.002, power = 0.90) and a higher rate of drug-resistant epilepsy although not reaching statistical significance (35.7% versus 21.9%, p = 0.20). Our study has provided further evidence to support WES as first-tier test for children with ASD and that an early genetic diagnosis has the potential to inform further surveillance and management for ASD comorbid conditions including epilepsy.

19.
Genes (Basel) ; 15(10)2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39457462

RESUMO

BACKGROUND: SLC13A5 Citrate Transporter Disorder is a rare pediatric neurodevelopmental disorder. Patients have epilepsy, developmental disability, and impaired mobility. While sleep disorders are common in children with neurodevelopmental disorders, sleep abnormalities have not been reported in SLC13A5 patients. METHODS: Here, we assessed sleep disturbances in patients through caregiver reported surveys and in a transgenic mouse model of SLC13A5 deficiency. A total of 26 patients were evaluated with the Sleep Disturbance Scale for Children three times over a one-year span. Sleep and wake activities were assessed in the SLC13A5 knock-out (KO) mice using wireless telemetry devices. RESULTS: A high burden of clinically significant sleep disturbances were reported in the patients, with heterogeneous symptoms that remained stable across time. While sleep disturbances were common, less than 30% of patients were prescribed medications for sleep. Comparatively, in SLC13A5 KO mice using EEG recordings, significant alterations were found during light cycles, when rodents typically sleep. During the sleep period, SLC13A5 mice had increased activity, decreased paradoxical sleep, and changes in absolute power spectral density, indicating altered sleep architecture in the mouse model. CONCLUSIONS: Our results demonstrate a significant component of sleep disturbances in SLC13A5 patients and mice, highlighting a potential gap in patient care. Further investigation of sleep dysfunction and the underlying etiologies of sleep disturbances in SLC13A5 citrate transporter disorder is warranted.


Assuntos
Camundongos Knockout , Transtornos do Sono-Vigília , Animais , Humanos , Camundongos , Transtornos do Sono-Vigília/genética , Masculino , Criança , Feminino , Pré-Escolar , Adolescente , Simportadores/genética , Simportadores/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Transtornos do Neurodesenvolvimento/genética
20.
J Neurosci ; 32(22): 7439-53, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649224

RESUMO

Doublecortin on X chromosome (DCX) is one of two major genetic loci underlying human lissencephaly, a neurodevelopmental disorder with defects in neuronal migration and axon outgrowth. DCX is a microtubule-binding protein, and much work has focused on its microtubule-associated functions. DCX has other reported binding partners, including the cell adhesion molecule neurofascin, but the functional significance of the DCX-neurofascin interaction is not understood. Neurofascin localizes strongly to the axon initial segment in mature neurons, where it plays a role in assembling and maintaining other axon initial segment components. During development, neurofascin likely plays additional roles in axon guidance and in GABAergic synaptogenesis. We show here that DCX can modulate the surface distribution of neurofascin in developing cultured rat neurons and thereby the relative extent of accumulation between the axon initial segment and soma and dendrites. Mechanistically, DCX acts via increasing endocytosis of neurofascin from soma and dendrites. Surprisingly, DCX increases neurofascin endocytosis apparently independently of its microtubule-binding activity. We additionally show that the patient allele DCXG253D still binds microtubules but is deficient in promoting neurofascin endocytosis. We propose that DCX acts as an endocytic adaptor for neurofascin to fine-tune its surface distribution during neuronal development.


Assuntos
Moléculas de Adesão Celular/metabolismo , Endocitose/fisiologia , Proteínas Associadas aos Microtúbulos/farmacologia , Microtúbulos/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/fisiologia , Neuropeptídeos/farmacologia , Animais , Anquirinas/metabolismo , Moléculas de Adesão Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Polaridade Celular/genética , Células Cultivadas , Chlorocebus aethiops , Dendritos/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Embrião de Mamíferos , Endocitose/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Imunoprecipitação , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Fatores de Crescimento Neural/genética , Neurônios/citologia , Neuropeptídeos/genética , Mutação Puntual/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Interferente Pequeno/metabolismo , Ratos , Canais de Sódio/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA