RESUMO
Enhancing and flexibly controlling the Goos-Hänchen (GH) shift directly is a significant challenge. Here, we report a tunable giant GH shift in a Au-ReS2-graphene heterostructure. The GH shift of this heterostructure demonstrates strong anisotropy and a unique "sign inversion" feature as the graphene reaches a specific thickness. Flexible control and enhancement of the GH shift to the centimeter scale can be achieved by simply rotating the crystallization direction of the heterostructure. Utilizing this feature, we designed an anisotropic refractive index sensor with a high sensitivity of 1.31 × 108â µm/RIU. This marks an order of magnitude improvement over previous research and introduces a rotation-dependent sensitivity adjustment feature. The tunable giant GH shift provides a promising approach for future designs of optical sensing and modulation devices.
RESUMO
BACKGROUND: Plant polysaccharides have various biological activities. However, few studies have been conducted on the skin barrier of Prinsepia utilis Royle polysaccharide extract (PURP). MATERIALS AND METHODS: The proportions of polysaccharides, monosaccharides and proteins were determined by extracting polysaccharides from fruit meal using water. The healing rate was measured by cell scratch assays. SDS-damaged reconstructed human epidermal models, an acetone-ether-induced mouse model and an IL-4-induced cellular inflammation model were used to detect the effects of polysaccharides on the phenotype, HA, TEWL, and TEER, with further characterizations performed using QRT-PCR, Western blotting, immunofluorescence (IF) assays. RESULTS: PURP contained 35.73% polysaccharides and 11.1% proteins. PURP promoted cell migration and increased skin thickness in a reconstructed human epidermis model. The TEWL significantly decreased, and the HA content significantly increased. PURP significantly increased the TEER and decreased the permeability of the SDS-damaged reconstructed human epidermis model. Claudin-3, Claudin-4, and Claudin-5 were significantly upregulated. IF and Western blot analysis revealed that the Claudin-4 level significantly increased after treatment with PURP. Claudin-1, Claudin-3, Claudin-4, and Claudin-5 gene expression and IF and immunohistochemical staining were significantly increased in mice treated with acetone-ether. PURP promoted the expression of Claudin-1, Claudin-3, Claudin-4, and Claudin-5 after treatment with 100 ng/mL IL-4. PURP also downregulated the expression of NO, IL6, TNFα and NFκB in Raw 264.7 cells and in a mouse model. CONCLUSION: We hypothesize that PURP may repair the skin barrier by promoting the expression of the claudin family and can assist in skin therapy.
Assuntos
Claudinas , Extratos Vegetais , Polissacarídeos , Animais , Camundongos , Polissacarídeos/farmacologia , Humanos , Extratos Vegetais/farmacologia , Claudinas/metabolismo , Claudinas/genética , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Modelos Animais de Doenças , Movimento Celular/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismoRESUMO
Over the last decade the availability of SNP-trait associations from genome-wide association studies has led to an array of methods for performing Mendelian randomization studies using only summary statistics. A common feature of these methods, besides their intuitive simplicity, is the ability to combine data from several sources, incorporate multiple variants and account for biases due to weak instruments and pleiotropy. With the advent of large and accessible fully-genotyped cohorts such as UK Biobank, there is now increasing interest in understanding how best to apply these well developed summary data methods to individual level data, and to explore the use of more sophisticated causal methods allowing for non-linearity and effect modification. In this paper we describe a general procedure for optimally applying any two sample summary data method using one sample data. Our procedure first performs a meta-analysis of summary data estimates that are intentionally contaminated by collider bias between the genetic instruments and unmeasured confounders, due to conditioning on the observed exposure. These estimates are then used to correct the standard observational association between an exposure and outcome. Simulations are conducted to demonstrate the method's performance against naive applications of two sample summary data MR. We apply the approach to the UK Biobank cohort to investigate the causal role of sleep disturbance on HbA1c levels, an important determinant of diabetes. Our approach can be viewed as a generalization of Dudbridge et al. (Nat. Comm. 10: 1561), who developed a technique to adjust for index event bias when uncovering genetic predictors of disease progression based on case-only data. Our work serves to clarify that in any one sample MR analysis, it can be advantageous to estimate causal relationships by artificially inducing and then correcting for collider bias.
Assuntos
Biologia Computacional/métodos , Hemoglobinas Glicadas/metabolismo , Análise da Randomização Mendeliana/métodos , Transtornos do Sono-Vigília/genética , Algoritmos , Bancos de Espécimes Biológicos , Bases de Dados Genéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Reino UnidoRESUMO
Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.
Assuntos
Proteína HMGB1 , Ligusticum , Osteoartrite , Humanos , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Condrócitos , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Dinoprostona , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Apoptose , RNA Mensageiro/metabolismoRESUMO
Ischemic stroke (IS) is characterized by high incidence, high recurrence, and high mortality and places a heavy burden on society and families. The pathological mechanisms of IS are complex, among which secondary neurological impairment mediated by neuroinflammation is considered to be the main factor in cerebral ischemic injury. At present, there is still a lack of specific therapies to treat neuroinflammation. The tumor suppressor protein p53 has long been regarded as a key substance in the regulation of the cell cycle and apoptosis in the past. Recently, studies have found that p53 also plays an important role in neuroinflammatory diseases, such as IS. Therefore, p53 may be a crucial target for the regulation of the neuroinflammatory response. Here, we provide a comprehensive review of the potential of targeting p53 in the treatment of neuroinflammation after IS. We describe the function of p53, the major immune cells involved in neuroinflammation, and the role of p53 in inflammatory responses mediated by these cells. Finally, we summarize the therapeutic strategies of targeting p53 in regulating the neuroinflammatory response after IS to provide new directions and ideas for the treatment of ischemic brain injury.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/complicações , Doenças Neuroinflamatórias , Proteína Supressora de Tumor p53/metabolismo , Inflamação/patologia , Apoptose , Acidente Vascular Cerebral/patologia , Isquemia Encefálica/metabolismoRESUMO
Some key low-carbon technologies, ranging from wind turbines to electric vehicles, are underpinned by the strong rare-earth-based permanent magnets of the Nd, Pr (Dy)-Fe-Nb type (NdFeB). These NdFeB magnets, which are sensitive to demagnetization with temperature elevation (the Curie point), require the addition of variable amounts of dysprosium (Dy), where an elevation of the Curie point is needed to meet operational conditions. Given that China is the world's largest REE supplier with abundant REE reserves, the impact of an ambitious 1.5 °C climate target on China's Dy supply chain has sparked widespread concern. Here, we explore future trends and innovation strategies associated with the linkage between Dy and NdFeBs under various climate scenarios in China. We find China alone is expected to exhaust the global present Dy reserve within the next 2-3 decades to facilitate the 1.5 °C climate target. By implementing global available innovation strategies, such as material substitution, reduction, and recycling, it is possible to avoid 48%-68% of China's cumulative demand for Dy. Nevertheless, ongoing efforts in REE exploration and production are still required to meet China's growing Dy demand, which will face competition from the United States, European Union, and other countries with ambitious climate targets. Thus, our analysis urges China and those nations to form wider cooperation in REE supply chains as well as in NdFeB innovation for the realization of a global climate-safe future.
Assuntos
Disprósio , Metais Terras Raras , Clima , Imãs , ChinaRESUMO
Ligustilide, a natural phthalide mainly derived from chuanxiong rhizomes and Angelica Sinensis roots, possesses anti-inflammatory activity, particularly in the context of the nervous system. However, its application is limited because of its unstable chemical properties. To overcome this limitation, ligusticum cycloprolactam (LIGc) was synthesized through structural modification of ligustilide. In this study, we combined network pharmacological methods with experimental verification to investigate the anti-neuroinflammatory effects and mechanisms of ligustilide and LIGc. Based on our network pharmacology analysis, we identified four key targets of ligustilide involved in exerting an anti-inflammatory effect, with the nuclear factor (NF)-κB signal pathway suggested as the main signalling pathway. To verify these results, we examined the expression of inflammatory cytokines and inflammation-related proteins, analysed the phosphorylation level of NF-κB, inhibitor of κBα (IκBα) and inhibitor of κB kinase α and ß (IKKα+ß), and evaluated the effect of BV2 cell-conditioned medium on HT22 cells in vitro. Our results, demonstrate for the first time that LIGc can downregulate the activation of the NF-κB signal pathway in BV2 cells induced by lipopolysaccharide, suppress the production of inflammatory cytokines and reduce nerve injury in HT22 cells mediated by BV2 cells. These findings suggest that LIGc inhibits the neuroinflammatory response mediated by BV2 cells, providing strong scientific support for the development of anti-inflammatory drugs based on natural ligustilide or its derivatives. However, there are some limitations to our current study. In the future, further experiments using in vivo models may provide additional evidence to support our findings.
Assuntos
Ligusticum , NF-kappa B , NF-kappa B/metabolismo , Ligusticum/metabolismo , Doenças Neuroinflamatórias , Farmacologia em Rede , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Microglia , Lipopolissacarídeos/farmacologiaRESUMO
Angelicae Sinensis Radix is one of the main Chinese medicinal materials with both medicinal and edible values. It has the functions of tonifying and activating blood, regulating menstruation and relieving pain, and moistening intestines to relieve constipation. It is mainly produced in the southeastern Gansu province, and that produced in Minxian, Gansu is praised for the best quality. The chemical components of Angelicae Sinensis Radix mainly include volatile oils, organic acids, and polysaccharides, which have anti-inflammatory, pain-relieving, anti-tumor, anti-oxidation, immunomodulatory and other pharmacological effects. Therefore, this medicinal material is widely used in clinical practice. By reviewing the relevant literature, this study systematically introduced the research status about the chemical constituents and pharmacological effects of processed Angelicae Sinensis Radix products, aiming to provide a theoretical reference and support for the future research, development, and clinical application of related drugs.
Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Óleos Voláteis , Medicamentos de Ervas Chinesas/farmacologia , Anti-Inflamatórios , DorRESUMO
Cholestasis caused by bile secretion and excretion disorders is a serious manifestation of hepatopathy. Interleukin (IL)-25 is a member of the IL-17 cytokine family, which involves in mucosal immunity and type 2 immunity via its receptor-IL-17RB. Our previous studies have shown that IL-25 improves non-alcoholic fatty liver via stimulating M2 macrophage polarization and promotes development of hepatocellular carcinoma via alternative activation of macrophages. These hepatopathy are closely associated with cholestasis. However, whether IL-25 play an important role in cholestasis remains unclear. IL-25 treatment and IL-25 knockout (Il25-/-) mice were injected intragastrically with α-naphthyl isothiocyanate (ANIT) to determine the biological association between IL-25 and cholestasis. Here, we found that IL-25 and IL-17RB decreased in ANIT-induced cholestatic mice. Il25-/- mice showed exacerbated ANIT-induced parenchymal injury and IL-25 treatment significantly alleviated cholestatic liver injury induced by ANIT. We found that IL-25 reduced the level of hepatic total bile acids and increased the expression of multidrug resistance-associated protein 2 (MRP2) and multidrug resistance-associated protein 3 (MRP3) in liver. In conclusion, IL-25 exhibited a protective effect against ANIT-induced cholestatic liver injury in mice, which may be related to the regulation on bile acids secretion. These results provide a theoretical basis for the use of IL-25 in the treatment of cholestatic hepatopathy.
Assuntos
Colestase , Hepatopatias , 1-Naftilisotiocianato/efeitos adversos , 1-Naftilisotiocianato/metabolismo , Animais , Ácidos e Sais Biliares/farmacologia , Colestase/metabolismo , Interleucina-17/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Despite favorable responses to platinum-based chemotherapy in ovarian cancer (OC), chemoresistance is still a major cause of treatment failure. Hence, we develop a novel synthetic agent, COM33, to relieve the chemoresistance caused by carboplatin. The anti-cancerous effects of the combination of COM33 and carboplatin on OC are evaluated by cell viability, wound healing, and transwell invasion assays. A mechanistic investigation is carried out by using RNA-Seq analysis and then verified by western blot analysis and immunofluorescence microscopy. The safety and efficacy in vivo are evaluated using SKOV3 tumor-bearing nude mice. Results show that the co-administration of COM33 enhances the inhibitory effects of carboplatin on cancer cell viability, migration, and invasion in vitro and tumor growth in vivo. Furthermore, COM33 suppresses the carboplatin-induced epithelial-mesenchymal transition (EMT) by inhibiting the ERK signaling pathway. Additionally, we show that Twist1, the effector of the ERK signaling pathway, participates in carboplatin-induced EMT and is also inhibited by COM33. Our data show that the combination of carboplatin with COM33 is beneficial for chemotherapy against OC, which may be a potential novel anti-tumor strategy.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias Ovarianas , Proteína 1 Relacionada a Twist , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Carboplatina/efeitos adversos , Carboplatina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Relacionada a Twist/antagonistas & inibidores , Proteína 1 Relacionada a Twist/metabolismoRESUMO
BACKGROUND: Isocorydine (ICD) has anticancer effects; however, its suboptimal bioactivity has driven the production of ICD derivatives, including 8-amino-isocorydine (8-NICD). OBJECTIVE: This study explored the antitumor effects of 8-NICD on a variety of tumor cell lines to detect tumors sensitive to 8-NICD and investigated the mechanisms by which it suppresses tumor cell growth. METHODS: Human gastric carcinoma (GC) cells (MGC-803) were used to evaluate the effects of 8-NICD on cell proliferation and apoptosis. The in vivo action of 8-NICD in a nude mouse xenograft model was also investigated. The antioxidant activity of 8-NICD was evaluated using a 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. RESULTS: 8-NICD exerted significant antitumor activity against several tumor cell lines with IC50 between 8.0 and 142.8 µM and was not toxic to healthy fibroblasts and epithelial cells at concentrations up to 100 µM. Moreover, 8-NICD strongly inhibited the proliferation of MGC803 cells without causing toxicity to human umbilical vein endothelial cells with a selectivity index of 19.2 and arrested MGC803 cells in the S phase. Further, the percentages of apoptotic MGC-803 and BGC823 cells increased in a concentration-dependent manner, and the expression of apoptosis regulator Bax increased, whereas that of Bcl-2 decreased in response to 8-NICD treatment. Further, 8-NICD significantly suppressed MGC-803 tumor growth in nude mice. In addition, 8-NICD was a potent scavenger of radicles in a 1,1-diphenyl-2-picrylhydrazyl (IC50â¯=â¯11.12 µM) antioxidant assay. CONCLUSIONS: These results suggest that 8-NICD exerts significant antitumor effects on GC cells by inducing apoptosis and cell cycle arrest and is a promising candidate anti-GC drug. The particularly high sensitivity of MGC803 cells suggest that the potential of 8-NICD to treat GC should be further explored. (Curr Ther Res Clin Exp. 2021; 82:XXX-XXX).
RESUMO
For the rational utilization and the quantitative quality control of the Stephania yunnanensis Lo, an HPLC-DAD method was developed for the quantitative and simultaneous determination of five alkaloids in rat plasma (stepharine, sinomenine, palmatine, isocorydine and tetrahydropalmatine), which were the main active chemical constituents of this plant and belong to four kinds of isoquinoline-type alkaloids (protoberberine, morphine, aporphine and protaporphine alkaloids). The contents of five alkaloids ranged from 0.09 to 2.32% (w/w). The method validation was tested for the linearity (r2 > 0.9975), precision (intra-day RSD < 4.8% and inter-day RSD < 4.9%), extraction recovery (85.49 ± 2.29% to 99.21 ± 1.48%) and stability (98.5 ± 5.3% to 101.2 ± 3.4%). We developed an HPLC-DAD method to simultaneously measure these alkaloids in rat plasma after oral administration of the extract of this plant to rats. The results supported the hypothesis that isoquinoline alkaloids were the compounds responsible for the main pharmacological activities for anti-inflammatory and analgesic.
Assuntos
Alcaloides/sangue , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/administração & dosagem , Stephania/química , Administração Oral , Alcaloides/química , Alcaloides/farmacocinética , Animais , Feminino , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Reprodutibilidade dos TestesRESUMO
Isocorydine (ICD), an aporphine alkaloid, is widely distributed in nature. Its ability to target side population (SP) cells found in human hepatocellular carcinoma (HCC) makes it and its derivative 8-amino-isocorydine (NICD) promising chemotherapeutic agents for the treatment of HCC. To improve the anticancer activity of isocorydine derivatives, twenty derivatives of NICD were designed and synthesized through chemical structure modifications of the aromatic amino group at C-8. The anti-proliferative activities of all synthesized compounds against human hepatocellular (HepG2), cervical (HeLa), and gastric (MGC-803) cancer cell lines were evaluated using an MTT assay. The results showed that all the synthetic compounds had some tumor cell growth inhibitory activity. The compound COM33 (24) was the most active with IC50 values under 10⯵M (IC50 for HepG2â¯=â¯7.51⯵M; IC50 for HeLaâ¯=â¯6.32⯵M). FICD (12) and COM33 (24) were selected for further investigation of their in vitro and in vivo activities due to their relatively good antiproliferative properties. These two compounds significantly downregulated the expression of four key proteins (C-Myc, ß-Catenin, CylinD1, and Ki67) in HepG2 cells. The tumor inhibition rate of COM33 (24) in vivo was 73.8% after a dose 100â¯mg/kg via intraperitoneal injection and the combined inhibition rate of COM33 (24) (50â¯mg/kg) with sorafenib (50â¯mg/kg) was 66.5%. The results indicated that these isocorydine derivatives could potentially be used as targeted chemotherapy agents or could be further developed in combination with conventional chemotherapy drugs to target cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT), the main therapeutic targets in HCC.
Assuntos
Antineoplásicos/farmacologia , Aporfinas/farmacologia , Desenho de Fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Aporfinas/síntese química , Aporfinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Relação Estrutura-AtividadeRESUMO
Isocorydine and its analogs were extracted from Dicranostigma leptopodum and Stephania yunnanensis through the method of natural products chemistry. Its derivatives were prepared by chemical structure modifications from isocorydine. MTT method was used to study the inhibitory effect of those compounds on the growth of HepG2, HeLa and MGC-803 cancer cell lines in vitro. The results showed that isocorydine and its analogs all have the growth inhibition for those cancer cell lines. This paper investigated the structure-activity relationship of isocorydine and its derivatives with anticancer activity in the aspect of stereochemical structure, functional groups positions of the compounds and the electron density of aromatic rings based on the single crystal diffraction structure and the molecular docking of EGFR and isocorydine.
Assuntos
Antineoplásicos/farmacologia , Aporfinas/farmacologia , Linhagem Celular Tumoral , Receptores ErbB , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
We have previously demonstrated that isocorydine (ICD) can be served as a potential antitumor agent in hepatocellular carcinoma (HCC). A novel derivate of isocorydine (d-ICD) could significantly improve its anticancer activity in tumors. However, the molecular mechanisms of d-ICD on HCC cells remain to be unclear. In this study, we observed that d-ICD inhibited cell proliferation and induced apoptosis of HCC cells in a concentration-dependent manner. We found d-ICD induced G2/M cycle arrest of HCC cells via DNA damage 45 alpha (GADD45A) and p21 pathway in vitro and in vivo. In d-ICD-treated cells, cell cycle-related proteins cyclin B1 and p-CDC2 were upregulated and p-cyclin B1, CDC2, and E2F1 were inhibited. p21 expression can be reversed by knockdown of GADD45A in d-ICD-treated HCC cells. Enforced expression of CCAAT/enhancer-binding protein ß (C/EBPß) in combination with d-ICD enhanced the p21 expression in HCC cells. Furthermore, the luciferase reporter assay showed that upregulation of GADD45A by C/EBPß was achieved through the increase of GADD45A promoter activity. These findings indicate that d-ICD inhibits cell proliferation and induces cell cycle arrest through activation of C/EBPß-GADD45A-p21 pathway in HCC cells. d-ICD might be a promising chemotherapeutic agent for the treatment of HCC.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Aporfinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Proteínas Nucleares/metabolismo , Compostos de Fenilureia/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sorafenibe , Carga Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A three-phase solvent system was efficiently applied for high-speed counter-current chromatography to separate secondary metabolites with a wide range of hydrophobicity in Dicranostigma leptopodum. The three-phase solvent system of n-hexane/methyl tert-butyl ether/acetonitrile/0.5% triethylamine (2:2:3:2, v/v/v/v) was selected for high-speed counter-current chromatography separation. The separation was initiated by filling the column with a mixture of intermediate phase and lower phase as a stationary phase followed by elution with upper phase to separate the hydrophobic compounds. Then the mobile phase was switched to the intermediate phase to elute the moderately hydrophobic compounds, and finally the polar compounds still retained in the column were fractionated by eluting the column with the lower phase. In this research, 12 peaks were eluted out in one-step operation within 110 min, among them, eight compounds with acceptable purity were obtained and identified. The purities of ß-sitosterol, protopine, allocryptopine, isocorydione, isocorydine, coptisine, berberrubine, and berberine were 94.7, 96.5, 97.9, 86.6, 98.9, 97.6, 95.7, and 92.8%, respectively.
Assuntos
Papaveraceae/química , Extratos Vegetais/química , Solventes/química , Acetonitrilas/química , Berberina/química , Cromatografia , Cromatografia Líquida de Alta Pressão , Distribuição Contracorrente , Etilaminas/química , Hexanos/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Éteres Metílicos/química , Sitosteroides/químicaRESUMO
A simple and efficient method was developed for the simultaneous determination of eight isoquinoline alkaloids in methanol extracts of Dicranostigma leptopodum (Maxim) Fedde and the effective fractionation of the alkaloids of D. leptopodum by high-performance liquid chromatography with diode array detection. The chromatographic conditions were optimized on a SinoChrom ODS-BP column to obtain a good separation of the four types of alkaloid analytes, including two aporphines (isocorydine, corydine), two protopines (protopine and allocryptopine), a morphine (sinoacutine), and three quaternary protoberberine alkaloids (berberrubine, 5-hydroxycoptisine, and berberine). The separation of these alkaloids was significantly affected by the composition of the mobile phase, and particularly by its pH value. Acetonitrile (A) and 0.2% phosphoric acid solution adjusted to pH 6.32 with triethylamine (B) were selected as the mobile phase with a gradient elution. With this method, a new quaternary protoberberine alkaloid was isolated and the two structural isomers (isocorydine and corydine) were baseline separated. The appropriate harvest period for D. leptopodum was also recommended based on our analysis. The method for the effective fraction of the alkaloids of D. leptopodum was optimized under this method with regard to the varying significant pharmacological activities of the alkaloids.
Assuntos
Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/isolamento & purificação , Isoquinolinas/análise , Isoquinolinas/isolamento & purificação , Papaveraceae/química , Alcaloides/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentaçãoRESUMO
In order to improve the anticancer activity of isocorydine (ICD), ten isocorydine derivatives were prepared through chemical structure modifications, and their in vitro and in vivo activities were experimentally investigated. 8-Amino-isocorydine (8) and 6a,7-dihydrogen-isocorydione (10) could inhibit the growth of human lung (A549), gastric (SGC7901) and liver (HepG2) cancer cell lines in vitro. Isocorydione (2) could inhibit the tumor growth of murine sarcoma S180-bearing mice, and 8-acetamino-isocorydine (11), a pro-drug of 8-amino-isocorydine (8), which is instable in water solution at room temperature, had a good inhibitory effect on murine hepatoma H22-induced tumors. The results suggested that the isocorydine structural modifications at C-8 could significantly improve the biological activity of this alkaloid, indicating its suitability as a lead compound in the development of an effective anticancer agent.
Assuntos
Antineoplásicos Fitogênicos/química , Aporfinas/química , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Alcaloides/administração & dosagem , Alcaloides/síntese química , Alcaloides/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/síntese química , Aporfinas/administração & dosagem , Aporfinas/síntese química , Células Hep G2 , Humanos , Camundongos , Neoplasias/patologiaRESUMO
The inherent structural instability and very low bioavailability of ligustilide (Lig) lead to the limited application of the clinical neuroprotection. We developed a stabilised method for Lig, which involved a chemical synthesis between cyclopropylamine and the active phthalides extract included Lig from Angelica sinensis (Oliv) Diles or Ligusticum chuanxiong Hort, which generated correspond phthalide derivatives by nucleophilic additive and substituted reaction. During this process, four phthalide derivatives have been obtained and two compounds (3 and 4) stands out as an unprecedented dimeric phthalide entity. This research has meticulously delineated the stabilised pathway and polymerisation mechanics of Lig or its derivatives, an oxygen/glucose deprived PC12 cells experiment model utilised to screen the anti-stroke activity of this isolated Lig derivatives and the results supported this chemical transformation could achieve the stabilised goal of Lig and improved its anti-oxygen/glucose deprived activity.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, also known as the Anas fruit, is a unique perennial woody oil plant from Yunnan Province, China. In the ancient texts of Dongba sutras and Yunnan Southern Materia Medica, it has been documented that the local Naxi, Tibetan, and Mosuo communities extensively utilize the root and leaf fruits of green thorns for various purposes. These include treating mild-to-moderate specific dermatitis, moisturising the skin, providing protection against UV damage, aiding childbirth in pregnant women, safeguarding stomach health, reducing the risk of arteriosclerosis, and delaying aging. AIM OF THE STUDY: In this study, leftover residues from oil extraction were efficiently reused, and flavonoids were identified during subsequent extraction and separation processes. The anti-senescent effects of flavonoids in P. utilis Royle have not been systematically studied. Therefore, the objective of this study was to explore the anti-senescent properties of the flavonoids obtained from P. utilis Royle. METHODS: First, HPLC and other analytical techniques were used to identify the components of the P. utilis Royle flavonoid (PURF). Next, DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase were initially detected using in vitro biochemical assays. To examine its antioxidant properties, a zebrafish model was used, and to confirm its anti-senescent effects, a d-galactose-induced mouse aging model was employed. The anti-senescent mechanism of PURF was examined using a natural senescence HFF model. Furthermore, the anti-senescent target was confirmed using a 3D full T-Skin™ model. RESULTS: In vitro biochemical assays demonstrated that flavones exhibited potent antioxidant activity and anti-senescent potential by inhibiting DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase. It significantly enhanced the antioxidant effect on zebrafish while suppressing ROS and inflammatory injury, up-regulating COL1A1, COL3A1, AMPK, and mTOR gene expression and down-regulating MMP-9, TGF-ß, p21, and p16 gene expression suggesting its potential anti-senescent ability. Findings from the D-galactose-induced aging mouse model showed that PURF greatly increased SOD levels, while simultaneously decreasing HYP and MDA levels. In addition, when PURF was given to the HFF cell and 3D full T-Skin™ model, consistent trends were observed in gene and protein expression, with up-regulation of COL1A1, COL3A1, AMPK, and mTOR genes and down-regulation of TGF-ß, MMP-1, MMP-9, p21, and p16 genes. Therefore, these preliminary findings indicate that flavones can modulate AMPK/mTOR/TGF-ß signalling pathways to exert its influence. CONCLUSION: The kernel residue of natural P. utilis Royle oil extracted from Yunnan province was previously considered agricultural waste, but we successfully extracted and isolated its flavonoid components. Our preliminary studies demonstrated its potential as an environmentally friendly anti-senescent raw material.