Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nature ; 627(8004): 540-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448598

RESUMO

The generation of ultra-low-noise microwave and mmWave in miniaturized, chip-based platforms can transform communication, radar and sensing systems1-3. Optical frequency division that leverages optical references and optical frequency combs has emerged as a powerful technique to generate microwaves with superior spectral purity than any other approaches4-7. Here we demonstrate a miniaturized optical frequency division system that can potentially transfer the approach to a complementary metal-oxide-semiconductor-compatible integrated photonic platform. Phase stability is provided by a large mode volume, planar-waveguide-based optical reference coil cavity8,9 and is divided down from optical to mmWave frequency by using soliton microcombs generated in a waveguide-coupled microresonator10-12. Besides achieving record-low phase noise for integrated photonic mmWave oscillators, these devices can be heterogeneously integrated with semiconductor lasers, amplifiers and photodiodes, holding the potential of large-volume, low-cost manufacturing for fundamental and mass-market applications13.

2.
Small ; : e2403917, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032004

RESUMO

Phosphorescence in carbon dots (CDs) from triplet exciton radiative recombination at room temperature has achieved significant advancement. Confinement and nanoconfinement, serving as valuable techniques, are commonly utilized to brighten triplet exciton in CDs, thereby enhancing their phosphorescence. However, a comprehensive and universally applicable physical description of confinement-enhanced phosphorescence is still lacking, despite efforts to understand its underlying nature. In this study, the dominance of entropy is revealed in triplet exciton emission from CDs through the establishment of a microscopic vibration state model. CDs with varying entropy levels are studied, indicating that in a low entropy system, the multi-energy triplet exciton emission in CDs exhibits enhanced brightness, accompanied by a corresponding increase in their lifetimes. The product of lifetime and intensity in CDs serves as a descriptor for their phosphorescence properties. Moreover, an entropy-dependent information variation system based on the CDs is demonstrated. Specifically, in a low-entropy system, information is retained, whereas the corresponding information is erased in a high-entropy system. This work elucidates the underlying physical nature of confinement-enhanced triplet exciton emission, offering a deeper understanding of achieving ultralong phosphorescence in the future.

3.
Small ; : e2312218, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716754

RESUMO

Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.

4.
Opt Lett ; 49(1): 45-48, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134148

RESUMO

Photonic integrated lasers with an ultra-low fundamental linewidth and a high output power are important for precision atomic and quantum applications, high-capacity communications, and fiber sensing, yet wafer-scale solutions have remained elusive. Here we report an integrated stimulated Brillouin laser (SBL), based on a photonic molecule coupled resonator design, that achieves a sub-100-mHz fundamental linewidth with greater than 10-mW output power in the C band, fabricated on a 200-mm silicon nitride (Si3N4) CMOS-foundry compatible wafer-scale platform. The photonic molecule design is used to suppress the second-order Stokes (S2) emission, allowing the primary lasing mode to increase with the pump power without phase noise feedback from higher Stokes orders. The nested waveguide resonators have a 184 million intrinsic and 92 million loaded Q, over an order of magnitude improvement over prior photonic molecules, enabling precision resonance splitting of 198 MHz at the S2 frequency. We demonstrate S2-suppressed single-mode SBL with a minimum fundamental linewidth of 71±18 mHz, corresponding to a 23±6-mHz2/Hz white-frequency-noise floor, over an order of magnitude lower than prior integrated SBLs, with an ∼11-mW output power and 2.3-mW threshold power. The frequency noise reaches the resonator-intrinsic thermo-refractive noise from 2-kHz to 1-MHz offset. The laser phase noise reaches -155 dBc/Hz at 10-MHz offset. The performance of this chip-scale SBL shows promise not only to improve the reliability and reduce size and cost but also to enable new precision experiments that require the high-speed manipulation, control, and interrogation of atoms and qubits. Realization in the silicon nitride ultra-low loss platform is adaptable to a wide range of wavelengths from the visible to infrared and enables integration with other components for systems-on-chip solutions for a wide range of precision scientific and engineering applications including quantum sensing, gravitometers, atom interferometers, precision metrology, optical atomic clocks, and ultra-low noise microwave generation.

5.
Chemphyschem ; : e202400597, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39072975

RESUMO

Single-component organic solar cells (SCOSCs) have attracted extensive attention due to their simplified device manufacturing and excellent stability. However, the relationship between morphology and charge carrier mobility in the active layers of SCOSCs is not well understood. In this work, we present a comprehensive investigation on this issue by studying four dyads (fullerenes as acceptor units) used as materials of active layers in small-molecule single-component organic solar cells (SM-SCOSCs), in which dyad 4 created the record of power conversion efficiency (PCE) of SM-SCOSC until now. Utilizing a multiscale theoretical approach, the results identify that the acceptor-acceptor stacking is dominant in amorphous films, significantly improving electron mobility and lowering hole mobility. We also find the importance of achieving a balance between electron and hole mobility to further improve PCE of SM-SCOSC because dyad 4 exhibits a more balanced electron/hole mobility than the other three molecules. These findings indicate the importance of tuning and enhancing donor-donor and acceptor-acceptor stacking simultaneously, offering insights for the design and optimization of future SM-SCOSC.

6.
Nano Lett ; 23(24): 11669-11677, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38060996

RESUMO

Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.

7.
Nano Lett ; 23(24): 11755-11762, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091579

RESUMO

The issues of fruit waste and safety resulting from rot have spurred a demand for improved packaging systems. Herein, we present highly antibacterial and antioxidative carbon nanodot/silk fibroin (CD/SF) films for fruit preservation. The films are composed of CDs and SF together with a small amount of glycerol via hydrogen bonding, exhibiting outstanding biosafety, transparency, and stretchability. The films effectively integrate key functionalities (atmosphere control, resistance to food-borne pathogens, and antioxidation properties) and can be manufactured in large sizes (about 20 × 30 cm), boasting a transmission rate of 13 183 cm3/m2·day for oxygen and 2860 g/m2·day for water vapor, favoring the preservation of fresh fruits. A convenient dip-coating method enables in situ fabrication of films with a thickness of approximately 14 µm directly on the fruits' surface providing comprehensive protection. Importantly, the films are washable and biodegradable. This work presents a promising technology to produce multifunctional and eco-friendly antibacterial packaging systems.


Assuntos
Fibroínas , Frutas/microbiologia , Antioxidantes/farmacologia , Antibacterianos/farmacologia
8.
Small ; 19(31): e2302504, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37282771

RESUMO

Phosphorescent materials as block elements to build artwork incorporating the time and emission, enable them with spectacular lighting effects. In this work, enhanced phosphorescence of carbon nanodots (CNDs) is demonstrated via double confinement strategy, which silica and epoxy resin are used as the first and the second order confinement layer. The multi-confined CNDs show an enhanced phosphorescence quantum yield up to 16.4%, with enduring emission lifetime up to 1.44 s. Delicately, the plasticity of the epoxy resin enables them easily to be designed for 3D artworks with long emission lifetimes in different shapes. The efficient and eco-friendly phosphorescent CNDs may arouse intense interest both in the academic community and markets.

9.
Small ; 19(31): e2205916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36494158

RESUMO

Room-temperature phosphorescence has received much attention owing to its potential applications in information encryption and bioelectronics. However, the preparation of full-color single-component-derived phosphorescent materials remains a challenge. Herein, a facile in situ confining strategy is proposed to achieve full-color phosphorescent carbon dots (CDs) through rapid microwave-assisted carbonization of citric acid in NaOH. By tuning the mass ratio of citric acid and NaOH, the obtained CDs exhibit tunable phosphorescence wavelengths ranging from 483 to 635 nm and alterable lifetimes from 58 to 389 ms with a synthesis yield of up to 83.7% (>30 g per synthesis). Theoretical calculations and experimental results confirm that the formation of high-density ionic bonds between cations and CDs leads to efficient afterglow emission via the dissociation of CD arrangement, and the evolution of the aggregation state of CDs results in redshifted phosphorescence. These findings provide a strategy for the synthesis of new insights into achieving and manipulating room-temperature phosphorescent CDs, and prospect their applications in labeling and information encryption.

10.
Opt Lett ; 48(9): 2373-2376, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126277

RESUMO

Photonic molecules can realize complex optical energy modes that simulate states of matter and have application to quantum, linear, and nonlinear optical systems. To achieve their full potential, it is critical to scale the photonic molecule energy state complexity and provide flexible, controllable, stable, high-resolution energy state engineering with low power tuning mechanisms. In this work, we demonstrate a controllable, silicon nitride integrated photonic molecule, with three high-quality factor ring resonators strongly coupled to each other and individually actuated using ultralow-power thin-film lead zirconate titanate (PZT) tuning. The resulting six tunable supermodes can be fully controlled, including their degeneracy, location, and degree of splitting, and the PZT actuator design yields narrow PM energy state linewidths below 58 MHz without degradation as the resonance shifts, with over an order of magnitude improvement in resonance splitting-to-width ratio of 58, and power consumption of 90 nW per actuator, with a 1-dB photonic molecule loss. The strongly coupled PZT-controlled resonator design provides a high-degree of resolution and controllability in accessing the supermodes. Given the low loss of the silicon nitride platform from the visible to infrared and the three individual bus, six-port design, these results open the door to novel device designs and a wide range of applications including tunable lasers, high-order suppression ultranarrow-linewidth lasers, dispersion engineering, optical parametric oscillators, physics simulations, and atomic and quantum photonics.

11.
Nano Lett ; 22(10): 4097-4105, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35536674

RESUMO

Triplet excitons usually do not emit light under ambient conditions due to the spin-forbidden transition rule, thus they are called dark excitons. Herein, triplet excitons in carbon nanodots (CNDs) are brightened by embedding the CNDs into poly(vinyl alcohol) (PVA) films; flexible multicolor phosphorescence films are thus demonstrated. PVA chains can isolate the CNDs, and excited state electron or energy transfer induced triplet exciton quenching is thus reduced; while the formed hydrogen bonds between the CNDs and PVA can restrict vibration/rotation of the CNDs, thus further protecting the triplet excitons from nonradiative recombination. The lifetimes of the flexible multicolor phosphorescence films can reach 567, 1387, 726, and 311 ms, and the longest-lasting phosphorescence film can be observed by naked eyes for nearly 15 s even after bending 5000 times. The phosphorescence films can be processed into various patterns, and a dynamic optical signature concept has been proposed and demonstrated based on the phosphorescence films.


Assuntos
Carbono , Ligação de Hidrogênio
12.
Angew Chem Int Ed Engl ; 62(21): e202303066, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946862

RESUMO

Organic solar cells (OSCs) have advanced rapidly due to the development of new photovoltaic materials. However, the long-term stability of OSCs still poses a severe challenge for their commercial deployment. To address this issue, a dimer acceptor (dT9TBO) with flexible linker is developed for incorporation into small-molecule acceptors to form molecular alloy with enhanced intermolecular packing and suppressed molecular diffusion to stabilize active layer morphology. Consequently, the PM6 : Y6 : dT9TBO-based device displays an improved power conversion efficiency (PCE) of 18.41 % with excellent thermal stability and negligible decay after being aged at 65 °C for 1800 h. Moreover, the PM6 : Y6 : dT9TBO-based flexible OSC also exhibits excellent mechanical durability, maintaining 95 % of its initial PCE after being bended repetitively for 1500 cycles. This work provides a simple and effective way to fine-tune the molecular packing with stabilized morphology to overcome the trade-off between OSC efficiency and stability.

13.
Small ; 18(1): e2105415, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787363

RESUMO

Carbon dot (CD) based long-lived afterglow emission materials have attracted attention in recent years, but demonstration of white-light room-temperature afterglow remains challenging, due to the difficulty of simultaneous generation of multiple long-lived excited states with distinct chromatic emission. In this work, a white-light room-temperature long-lived afterglow emission from a CD powder with a high efficiency of 5.8% and Commission International de l'Eclairage (CIE) coordinates of (0.396, 0.409) is realized. The afterglow of the CDs originates from a synergy between the phosphorescence of the carbon core and the delayed fluorescence associated with the surface CN moieties, which is accomplished by matching the singlet state of the surface groups of the CDs with the long-lived triplet state of the carbon core, resulting in an efficient energy transfer. It is demonstrated how the long-lived afterglow emission of CDs can be utilized for fabrication of white light emitting devices and in anticounterfeiting applications.


Assuntos
Carbono , Luz , Transferência de Energia , Fluorescência , Temperatura
14.
Opt Express ; 30(18): 31816-31827, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242256

RESUMO

Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µm resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3 and 73.8 dB·Hz2/3 third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

15.
Opt Express ; 30(5): 6960-6969, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299469

RESUMO

Atomic, molecular and optical (AMO) visible light systems are the heart of precision applications including quantum, atomic clocks and precision metrology. As these systems scale in terms of number of lasers, wavelengths, and optical components, their reliability, space occupied, and power consumption will push the limits of using traditional laboratory-scale lasers and optics. Visible light photonic integration is critical to advancing AMO based sciences and applications, yet key performance aspects remain to be addressed, most notably waveguide losses and laser phase noise and stability. Additionally, a visible light integrated solution needs to be wafer-scale CMOS compatible and capable of supporting a wide array of photonic components. While the regime of ultra-low loss has been achieved at telecommunication wavelengths, progress at visible wavelengths has been limited. Here, we report the lowest waveguide losses and highest resonator Qs to date in the visible range, to the best of our knowledge. We report waveguide losses at wavelengths associated with strontium transitions in the 461 nm to 802 nm wavelength range, of 0.01 dB/cm to 0.09 dB/cm and associated intrinsic resonator Q of 60 Million to 9.5 Million, a decrease in loss by factors of 6x to 2x and increase in Q by factors of 10x to 1.5x over this visible wavelength range. Additionally, we measure an absorption limited loss and Q of 0.17 dB/m and 340 million at 674 nm. This level of performance is achieved in a wafer-scale foundry compatible Si3N4 platform with a 20 nm thick core and TEOS-PECVD deposited upper cladding oxide, and enables waveguides for different wavelengths to be fabricated on the same wafer with mask-only changes per wavelength. These results represent a significant step forward in waveguide platforms that operate in the visible, opening up a wide range of integrated applications that utilize atoms, ions and molecules including sensing, navigation, metrology and clocks.

16.
Opt Lett ; 47(7): 1855-1858, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363753

RESUMO

We demonstrate 0.034 dB/m loss waveguides in a 200-mm wafer-scale, silicon nitride (Si3N4) CMOS-foundry-compatible integration platform. We fabricate resonators that measure up to a 720 million intrinsic Q resonator at 1615 nm wavelength with a 258 kHz intrinsic linewidth. This resonator is used to realize a Brillouin laser with an energy-efficient 380 µW threshold power. The performance is achieved by reducing scattering losses through a combination of single-mode TM waveguide design and an etched blanket-layer low-pressure chemical vapor deposition (LPCVD) 80 nm Si3N4 waveguide core combined with thermal oxide lower and tetraethoxysilane plasma-enhanced chemical vapor deposition (TEOS-PECVD) upper oxide cladding. This level of performance will enable photon preservation and energy-efficient generation of the spectrally pure light needed for photonic integration of a wide range of future precision scientific applications, including quantum, precision metrology, and optical atomic clocks.

17.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214444

RESUMO

In order to cut down on costs to the greatest possible extent, enterprises hope to distribute goods to different customers at the lowest costs possible. Based on this, this paper proposes an optimal location method for an intelligent transportation logistics warehouse. This scheme combines a variety of complex mechanisms to allow IoT devices to provide input. The scheme makes full use of the irreducibility of a blockchain system to promote the development and design of blockchain logistics applications. This method is aimed at tracking the progress of transportation of products in the whole supply chain. Experimental results show that, compared with traditional methods, the optimal positioning method has the advantages of fewer calculations, a high positioning accuracy, and a low overall cost, and it obtains the best warehouse positioning results. Based on the Internet of Things and blockchain technology, the application of intelligent logistics systems enables enterprises to intuitively understand their current inventory and the transportation status of goods, thus better controlling changes in enterprise resources.


Assuntos
Blockchain , Internet das Coisas , Tecnologia , Meios de Transporte
18.
Small ; 17(46): e2103374, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636153

RESUMO

Multilevel luminescence materials have aroused wide attention for their advanced anti-counterfeiting abilities. However, various complicated stimuli factors involved in multilevel luminescence anti-counterfeiting (MlLA) limit the practical applications of such materials. Herein, carbon dots (CDs) are in situ introduced into Eu-substituted AlPO4 -5 zeolite (named CDs@EuAPO-5) via a solvent-free thermal crystallization method, which exhibits triple emissions including pink fluorescence mainly associated with Eu3+ in the zeolite framework, blue fluorescence and green room temperature phosphorescence (RTP) associated with CDs. CDs are uniformly embedded in the EuAPO-5 zeolite matrix. Such composite displays excellent photo-, thermo-, and solvent resistance, as well as long-term storage-stability. Moreover, the triple emissions of the composite only need two kinds of common excitation lights to trigger, without involving other complicated stimuli. A triple-level luminescence anti-counterfeiting (TlLA) label has been built, realizing facile, quick, and advanced luminescence anti-counterfeiting that is hard to copy.


Assuntos
Pontos Quânticos , Zeolitas , Carbono , Fluorescência , Luminescência
19.
Small ; 16(22): e1907681, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32378305

RESUMO

Here, a pair of A1 -D-A2 -D-A1 unfused ring core-based nonfullerene small molecule acceptors (NF-SMAs), BO2FIDT-4Cl and BT2FIDT-4Cl is synthesized, which possess the same terminals (A1 ) and indacenodithiophene unit (D), coupling with different fluorinated electron-deficient central unit (difluorobenzoxadiazole or difluorobenzothiadiazole) (A2 ). BT2FIDT-4Cl exhibits a slightly smaller optical bandgap of 1.56 eV, upshifted highest occupied molecular orbital energy levels, much higher electron mobility, and slightly enhanced molecular packing order in neat thin films than that of BO2FIDT-4Cl. The polymer solar cells (PSCs) based on BT2FIDT-4Cl:PM7 yield the best power conversion efficiency (PCE) of 12.5% with a Voc of 0.97 V, which is higher than that of BO2FIDT-4Cl-based devices (PCE of 10.4%). The results demonstrate that the subtle modification of A2 unit would result in lower trap-assisted recombination, more favorable morphology features, and more balanced electron and hole mobility in the PM7:BT2FIDT-4Cl blend films. It is worth mentioning that the PCE of 12.5% is the highest value in nonfused ring NF-SMA-based binary PSCs with high Voc over 0.90 V. These results suggest that appropriate modulation of the quinoid electron-deficient central unit is an effective approach to construct highly efficient unfused ring NF-SMAs to boost PCE and Voc simultaneously.

20.
Nano Lett ; 19(8): 5553-5561, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31276414

RESUMO

Deep-ultraviolet (DUV) emissive carbon nanodots (CNDs) have been designed theoretically and demonstrated experimentally based on the results of first-principles calculations using the density functional theory method. The emission of the CNDs is located in the range from 280 to 300 nm, which coincides well with the results of theoretical calculation results. The photoluminescence (PL) quantum yield (QY) of the CNDs is up to 31.6%, and the strong emission of the CNDs originates from core-state (π-π*) carriers' radiative recombination and surface passivation. Benefiting from the core-state emission and surface group passivation, the emission of the CNDs is independent of the excitation wavelength and ambient solvent. DUV light-emitting diodes (LEDs) have been fabricated based on the DUV emissive CNDs, and the LEDs can be used as the excitation source to excite blue, green, and red CNDs, indicating their potential application in DUV light sources. This work may provide a clue for the designing and realizing of DUV emissive CNDs, thus promising the potential application of CNDs in DUV light-emitting sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA