Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107573

RESUMO

Ventricular septal defect (VSD) is the most common type of congenital heart disease. HAND1 gene plays a crucial role in the development of the heart, but the role of the variants in the HAND1 gene promoter region in patients with VSD has not been explored yet. From 588 participants (300 with isolated and sporadic VSD and 288 healthy controls), DNA was extracted from blood samples. Variants at the HAND1 gene promoter region were analyzed through Sanger sequencing. Subsequently, cell functional validation was conducted through cell experiments, including dual-luciferase reporter gene analysis, electrophoretic mobility shift analysis, and bioinformatics analysis was also conducted. The promoter region of HAND1 gene had a total of 9 identified variant sites. Among them, 4 variants were exclusively found in VSD patients, and 1 variant (g.3631A>C) was newly discovered. Cell functional experiments indicated that all four variants decreased the transcriptional activity of HAND1 gene promoter with three of them reached statistical significance (p < 0.05). Subsequent analysis using JASPAR (a transcription factor binding profile database) suggests that these variants may alter the binding sites of transcription factors, potentially contributing to the formation of VSD. Our study for the first time identified variants in the promoter region of HAND1 gene in Chinese patients with isolated and sporadic VSD. These variants significantly decreased the expression of HAND1 gene, impacting transcription factor binding sites, and thereby demonstrating pathogenicity. This study offers new insights into the role of HAND1 gene promoter region, contributing to a better understanding of the genetic basis of VSD formation.

2.
Circ Res ; 127(4): 534-549, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32316875

RESUMO

RATIONALE: SNX10 (sorting nexin 10) has been reported to play a critical role in regulating macrophage function and lipid metabolism. OBJECTIVE: To investigate the precise role of SNX10 in atherosclerotic diseases and the underlying mechanisms. METHODS AND RESULTS: SNX10 expression was compared between human healthy vessels and carotid atherosclerotic plaques. Myeloid cell-specific SNX10 knockdown mice were crossed onto the APOE-/- (apolipoprotein E) background and atherogenesis (high-cholesterol diet-induced) was monitored for 16 weeks. We found that SNX10 expression was increased in atherosclerotic lesions of aortic specimens from humans and APOE-/- mice. Myeloid cell-specific SNX10 deficiency (Δ knockout [KO]) attenuated atherosclerosis progression in APOE-/- mice. The population of anti-inflammatory monocytes/macrophages was increased in the peripheral blood and atherosclerotic lesions of ΔKO mice. In vitro experiments showed that SNX10 deficiency-inhibited foam cell formation through interrupting the internalization of CD36, which requires the interaction of SNX10 and Lyn-AKT (protein kinase B). The reduced Lyn-AKT activation by SNX10 deficiency promoted the nuclear translocation of TFEB (transcription factor EB), thereby enhanced lysosomal biogenesis and LAL (lysosomal acid lipase) activity, resulting in an increase of free fatty acids to fuel mitochondrial fatty acid oxidation. This further promoted the reprogramming of macrophages and shifted toward the anti-inflammatory phenotype. CONCLUSIONS: Our data demonstrate for the first time that SNX10 plays a crucial role in diet-induced atherogenesis via the previously unknown link between the Lyn-Akt-TFEB signaling pathway and macrophage reprogramming, suggest that SNX10 may be a potentially promising therapeutic target for atherosclerosis treatment.


Assuntos
Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Reprogramação Celular/fisiologia , Macrófagos/fisiologia , Nexinas de Classificação/fisiologia , Animais , Apolipoproteínas E/genética , Aterosclerose/sangue , Aterosclerose/patologia , Antígenos CD36/metabolismo , Núcleo Celular/metabolismo , Progressão da Doença , Ácidos Graxos não Esterificados/metabolismo , Células Espumosas/citologia , Humanos , Lisossomos/fisiologia , Macrófagos/citologia , Camundongos , Mitocôndrias/metabolismo , Monócitos/citologia , Oxirredução , Proteínas Proto-Oncogênicas c-akt/metabolismo , Nexinas de Classificação/deficiência , Nexinas de Classificação/genética , Esterol Esterase/metabolismo
3.
J Cell Physiol ; 234(5): 6842-6853, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30480800

RESUMO

Patent ductus arteriosus is the third most common congenital heart disease and resulted from the persistence of ductal patency after birth. Ductus arteriosus closure involves functional and structural remodeling, controlled by many factors. The changes in plasma protein levels associated with PDA closure are not known. Here we for the first time demonstrate six key differential plasma proteins in human patent ductus arteriosus patients using proteomic technology and present a model to illustrate the constriction and closure of ductus arteriosus. Differentially expressed proteins were analyzed by using isobaric tags for relative and absolute quantification and validated by enzyme-linked immunosorbent assay in new samples. The proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD008568. We found 74 upregulated and 98 downregulated proteins in the plasma of patients with PDA. Five decreased proteins (platelet factor 4, fibrinogen, von Willebrand factor, collagen, and mannose binding lectin-associated serine protease-2) and one increased protein (fibronectin) may increase the risk of patent ductus arteriosus. Those proteins are closely related to platelet activation and coagulation cascades, complement mannan-binding-lectin, and other systemic signaling pathways. Our findings for the first time indicate that the differential proteins involved in different pathways may play key roles in the nonclosure of the ductus arteriosus in humans and may be developed as biomarkers for diagnosis. All those findings may be served as the basis of understanding the etiology and pathogenesis of patent ductus arteriosus.


Assuntos
Plaquetas/metabolismo , Proteínas Sanguíneas/metabolismo , Permeabilidade do Canal Arterial/metabolismo , Células Endoteliais/metabolismo , Biomarcadores/metabolismo , Pré-Escolar , Regulação para Baixo/fisiologia , Feminino , Humanos , Masculino , Proteômica/métodos , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
4.
Hepatobiliary Pancreat Dis Int ; 18(1): 38-47, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30243878

RESUMO

BACKGROUND: Previous research suggested that insulin-like growth factor binding protein related protein 1 (IGFBPrP1), as a novel mediator, contributes to hepatic fibrogenesis. Matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) play an essential role in hepatic fibrogenesis by regulating homeostasis and remodeling of the extracellular matrix (ECM). However, the interaction between IGFBPrP1 and MMP/TIMP is not clear. The present study was to knockdown IGFBPrP1 to investigate the correlation between IGFBPrP1 and MMP/TIMP in hepatic fibrosis. METHODS: Hepatic fibrosis was induced by thioacetamide (TAA) in mice. Knockdown of IGFBPrP1 expression by ultrasound-targeted microbubble destruction-mediated CMB-shRNA-IGFBPrP1 delivery, or inhibition of the Hedgehog (Hh) pathway by cyclopamine treatment, was performed in TAA-induced liver fibrosis mice. Hepatic fibrosis was determined by hematoxylin and eosin and Sirius red staining. Hepatic expression of IGFBPrP1, α-smooth muscle actin (α-SMA), transforming growth factor ß 1 (TGFß1), collagen I, MMPs/TIMPs, Sonic Hedgehog (Shh), and glioblastoma family transcription factors (Gli1) were investigated by immunohistochemical staining and Western blotting analysis. RESULTS: We found that hepatic expression of IGFBPrP1, TGFß1, α-SMA, and collagen I were increased longitudinally in mice with TAA-induced hepatic fibrosis, concomitant with MMP2/TIMP2 and MMP9/TIMP1 imbalance and Hh pathway activation. Knockdown of IGFBPrP1 expression, or inhibition of the Hh pathway, reduced the hepatic expression of IGFBPrP1, TGFß1, α-SMA, and collagen I and re-established MMP2/TIMP2 and MMP9/TIMP1 balance. CONCLUSIONS: Our findings suggest that IGFBPrP1 knockdown attenuates liver fibrosis by re-establishing MMP2/TIMP2 and MMP9/TIMP1 balance, concomitant with the inhibition of hepatic stellate cell activation, down-regulation of TGFß1 expression, and degradation of the ECM. Furthermore, the Hh pathway mediates IGFBPrP1 knockdown-induced attenuation of hepatic fibrosis through the regulation of MMPs/TIMPs balance.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Técnicas de Silenciamento de Genes , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Cirrose Hepática Experimental/prevenção & controle , Fígado/enzimologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Actinas/genética , Actinas/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/deficiência , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/genética , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Transdução de Sinais , Tioacetamida , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
5.
J Hepatol ; 69(1): 129-141, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452206

RESUMO

BACKGROUND & AIMS: Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. However, the cellular defense mechanisms underlying ALD are not well understood. Recent studies highlighted the involvement of chaperone-mediated autophagy (CMA) in regulating hepatic lipid metabolism. Sorting nexin (SNX)-10 has a regulatory function in endolysosomal trafficking and stabilisation. Here, we investigated the roles of SNX10 in CMA activation and in the pathogenesis of alcohol-induced liver injury and steatosis. METHODS: Snx10 knockout (Snx10 KO) mice and their wild-type (WT) littermates fed either the Lieber-DeCarli liquid alcohol diet or a control liquid diet, and primary cultured WT and Snx10 KO hepatocytes stimulated with ethanol, were used as in vivo and in vitro ALD models, respectively. Activation of CMA, liver injury parameters, inflammatory cytokines, oxidative stress and lipid metabolism were measured. RESULTS: Compared with WT littermates, Snx10 KO mice exhibited a significant amelioration in ethanol-induced liver injury and hepatic steatosis. Both in vivo and in vitro studies showed that SNX10 deficiency upregulated lysosome-associated membrane protein type 2A (LAMP-2A) expression and CMA activation, which could be reversed by SNX10 overexpression in vitro. LAMP-2A interference confirmed that the upregulation of Nrf2 and AMPK signalling pathways induced by SNX10 deficiency relied on CMA activation. Pull-down assays revealed an interaction between SNX10 and cathepsin A (CTSA), a key enzyme involved in LAMP-2A degradation. Deficiency in SNX10 inhibited CTSA maturation and increased the stability of LAMP-2A, resulting in an increase in CMA activity. CONCLUSIONS: SNX10 controls CMA activity by mediating CTSA maturation, and, thus, has an essential role in alcohol-induced liver injury and steatosis. Our results provide evidence for SNX10 as a potential promising therapeutic target for preventing or ameliorating liver injury in ALD. LAY SUMMARY: Alcoholic liver disease is a major cause of morbidity and mortality worldwide. Recent studies highlight the involvement of chaperone-mediated autophagy (CMA) in regulating hepatic lipid metabolism. Our study reveals that deficiency of sorting nexin (SNX) 10 increases the stability of LAMP-2A by inhibiting cathepsin A maturation, resulting in the increase of CMA activity and, thus, alleviates alcohol-induced liver injury and steatosis.


Assuntos
Fígado Gorduroso/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/complicações , Estresse Oxidativo , RNA/genética , Nexinas de Classificação/genética , Animais , Autofagia , Western Blotting , Modelos Animais de Doenças , Etanol , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Hepatócitos/patologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Nexinas de Classificação/biossíntese
6.
Cell Physiol Biochem ; 47(1): 140-150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29763909

RESUMO

BACKGROUND/AIMS: Cardiac remodeling is a critical pathogenetic process leading to heart failure. Suppressor of cytokine signaling-3 (SOCS3) is demonstrated as a key negative regulator of the gp130 receptor to inhibit cardiac hypertrophy. However, the role of SOCS3 in deoxycorticosterone-acetate (DOCA)-salt-induced cardiac remodeling remains unclear. METHODS: Cardiac-specific SOCS3 knockout (SOCS3cKO) and wild-type (WT) C57BL/6J mice were subjected to uninephrectomy and DOCA-salt for 3 weeks. The effect of SOCS3 on cardiac remodeling and inflammation was evaluated by histological analysis. Gene and protein levels were measured by real-time PCR and immunoblotting analysis. RESULTS: After DOCA-salt treatment, the expression of SOCS3, activation of gp130/JAK/STAT3, cardiac dysfunction and fibrosis in DOCA-salt mice were significantly elevated, which were markedly attenuated by eplerenone, a specific mineralocorticoid receptor (MR) blocker. Moreover, DOCA-salt-induced cardiac dysfunction, hypertrophy, fibrosis and inflammation were aggravated in SOCS3cKO mice, but were significantly reduced in AAV9-SOCS3-injected mice. These effects were mostly associated with activation of gp130/STAT3/AKT/ERK1/2, TGF-ß/Smad2/3 and NF-κB signaling pathways. CONCLUSIONS: Our data demonstrate that loss of SOCS3 in cardiomyocytes promotes DOCA-salt-induced cardiac remodeling and inflammation, and it may be a novel potential therapeutic target for hypertensive heart disease.


Assuntos
Cardiomegalia/genética , Receptor gp130 de Citocina/metabolismo , Deleção de Genes , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Acetato de Desoxicorticosterona , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Regulação para Cima
7.
Biochem Biophys Res Commun ; 490(2): 84-90, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28478040

RESUMO

The immunoproteasome is a multicatalytic protease complex in all eukaryotic cells, which plays a key role in regulating essential cellular processes. However, the role of immunoproteasome subunit ß2i in regulation of cardiac fibrosis and inflammation in deoxycorticosterone-acetate (DOCA)/salt mice remains unknown. Wild-type (WT) and ß2i knockout (KO) mice were subjected to uninephrectomy and DOCA/salt treatment for 21 days. Blood pressure was measured by the tail-cuff system. Cardiac function and remodeling were examined by echocardiography, hematoxylin-eosin (H&E) and Masson's trichrome staining. The gene and protein expressions were detected by quantitative real-time PCR, and Western blot analysis. After 21 days, DOCA/salt treatment significantly up-regulated the expression of ß2i mRNA and protein in the hearts. Moreover, systolic blood pressure and heart weight/body weight (HW/BW) ratio were significantly higher in DOCA/salt mice than in sham groups, and these effects were markedly reversed in ß2i knockout mice. Importantly, DOCA/salt-induced cardiac fibrosis, inflammation and the expression of collagen I, collagen III, α-SMA, IL-1ß, IL-6 and TNF-α in the wild-type hearts, which were markedly attenuated by ß2i knockout. These beneficial effects were due, at least in part, to the inhibition of IκBα/NF-κB and TGF-ß1/Smad2/3 signaling pathways. Collectively, these findings indicate that knockout of ß2i ameliorates DOCA/salt-induced cardiac fibrosis and inflammation, and may be a novel potential therapeutic target for hypertensive heart diseases.


Assuntos
Cisteína Endopeptidases/metabolismo , Fibrose/metabolismo , Hipertensão/metabolismo , Inflamação/metabolismo , Animais , Cisteína Endopeptidases/deficiência , Acetato de Desoxicorticosterona , Hipertensão/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma , Sais
8.
J Card Surg ; 32(1): 45-48, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27894156

RESUMO

We have modified the mitral repair technique in infants and small children by using autologous pericardial strips to treat mitral regurgitation resulting from a dilated mitral annulus. Our results demonstrate that this technique maintains stability and flexibility of the mitral annulus and decreases the risk of mitral stenosis.


Assuntos
Procedimentos Cirúrgicos Cardíacos/métodos , Insuficiência da Valva Mitral/cirurgia , Estenose da Valva Mitral/cirurgia , Valva Mitral/cirurgia , Pericárdio/transplante , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Imagem Cinética por Ressonância Magnética , Masculino , Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/diagnóstico , Estenose da Valva Mitral/diagnóstico , Estudos Retrospectivos , Técnicas de Sutura , Transplante Autólogo
9.
Hepatobiliary Pancreat Dis Int ; 16(4): 395-404, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28823370

RESUMO

BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGFß1) is known as the strongest effector of liver fibrosis. Therefore, we aimed to investigate the detailed interaction between IGFBPrP1 and TGFß1 in primary hepatic stellate cells (HSCs). METHODS: We overexpressed TGFß1 or IGFBPrP1 and inhibited TGFß1 expression in primary HSCs for 6, 12, 24, 48, 72, and 96 hours to investigate their interaction and observe the accompanying expressions of α-smooth muscle actin (α-SMA), collagen I, fibronectin, and phosphorylated-mothers against decapentaplegic homolog 2/3 (p-Smad2/3). RESULTS: We found that the adenovirus vector encoding the TGFß1 gene (AdTGFß1) induced IGFBPrP1 expression while that of α-SMA, collagen I, fibronectin, and TGFß1 increased gradually. Concomitantly, AdIGFBPrP1 upregulated TGFß1, α-SMA, collagen I, fibronectin, and p-Smad2/3 in a time-dependent manner while IGFBPrP1 expression was decreased at 96 hours. Inhibition of TGFß1 expression reduced the IGFBPrP1-stimulated expression of α-SMA, collagen I, fibronectin, and p-Smad2/3. CONCLUSIONS: These findings for the first time suggest the existence of a possible mutually regulation between IGFBPrP1 and TGFß1, which likely accelerates liver fibrosis progression. Furthermore, IGFBPrP1 likely participates in liver fibrosis in a TGFß1-depedent manner, and may act as an upstream regulatory factor of TGFß1 in the Smad pathway.


Assuntos
Células Estreladas do Fígado/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Progressão da Doença , Fibronectinas/metabolismo , Células Estreladas do Fígado/patologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , Fosforilação , Cultura Primária de Células , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fatores de Tempo , Transfecção , Fator de Crescimento Transformador beta1/genética
10.
Hepatology ; 61(5): 1603-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25557975

RESUMO

UNLABELLED: The prognosis for hepatocellular carcinoma (HCC) remains dismal in terms of overall survival (OS), and its molecular pathogenesis has not been completely defined. Here, we report that expression of deubiquitylase ubiquitin-specific protease 7 (USP7) is higher in human HCC tissues than in matched peritumoral tissues. Ectopic USP7 expression promotes growth of HCC cells in vivo and in vitro. Mechanistically, USP7 overexpression fosters HCC cell growth by forming a complex with and stabilizing thyroid hormone receptor-interacting protein 12 (TRIP12), which induces constitutive p14(ARF) ubiquitination. Clinically, USP7 overexpression is significantly correlated with a malignant phenotype, including larger tumor size, multiple tumor, poor differentiation, elevated alpha-fetoprotein, and microvascular invasion. Moreover, overexpression of USP7 and/or TRIP12 correlates with shorter OS and higher cumulative recurrence rates of HCC. CONCLUSION: USP7 stabilizes TRIP12 by deubiquitination, thus constitutively inactivating p14(ARF) and promoting HCC progression. This represents a novel marker for predicting prognosis and a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Ubiquitina Tiolesterase/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Peptidase 7 Específica de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA