Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nano Lett ; 23(18): 8585-8592, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37669044

RESUMO

Single-atom nanozymes (SAzymes) open new possibilities for the development of artificial enzymes that have catalytic activity comparable to that of natural peroxidase (POD). So far, most efforts have focused on the structural modulation of the Fe-N4 moiety to mimic the metalloprotein heme center. However, non-heme-iron POD with much higher activity, for example, HppE, has not been mimicked successfully due to its structural complexity. Herein, carbon dots (CDs)-supported SAzymes with twisted, nonplanar Fe-O3N2 active sites, highly similar to the non-heme iron center of HppE, was synthesized by exploiting disordered and subnanoscale domains in CDs. The Fe-CDs exhibit an excellent POD activity of 750 units/mg, surpassing the values of conventional SAzymes with planar Fe-N4. We further fabricated an activatable Fe-CDs-based therapeutic agent with near-infrared enhanced POD activity, a photothermal effect, and tumor-targeting ability. Our results represent a big step in the design of high-performance SAzymes and provide guidance for future applications for synergistic tumor therapy.

2.
Angew Chem Int Ed Engl ; 60(6): 3254-3260, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33137235

RESUMO

Synthesizing high-quality two-dimensional nanomaterials of nonlayered metal oxide is a challenge, especially when long-range single-crystallinity and clean high-energy surfaces are required. Reported here is the synthesis of single-crystalline MgO(111) nanosheets by a two-step process involving the formation of ultrathin Mg(OH)2 nanosheets as a precursor, and their selective topotactic conversion upon heating under dynamic vacuum. The defect-rich surface displays terminal -OH groups, three-coordinated O2- sites and low-coordinated Mg2+ sites, as well as single electrons trapped at oxygen vacancies, which render the MgO nanosheets highly reactive, as evidenced by the activation of CO molecules at low temperatures and pressures with formation of strongly adsorbed red-shifted CO and coupling of CO molecules into C2 species.

3.
J Am Chem Soc ; 139(6): 2122-2131, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28085260

RESUMO

Surface coordination chemistry of nanomaterials deals with the chemistry on how ligands are coordinated on their surface metal atoms and influence their properties at the molecular level. This Perspective demonstrates that there is a strong link between surface coordination chemistry and the shape-controlled synthesis, and many intriguing surface properties of metal nanomaterials. While small adsorbates introduced in the synthesis can control the shapes of metal nanocrystals by minimizing their surface energy via preferential coordination on specific facets, surface ligands properly coordinated on metal nanoparticles readily promote their catalysis via steric interactions and electronic modifications. The difficulty in the research of surface coordination chemistry of nanomaterials mainly lies in the lack of effective tools to characterize their molecular surface coordination structures. Also highlighted are several model material systems that facilitate the characterizations of surface coordination structures, including ultrathin nanostructures, atomically precise metal nanoclusters, and atomically dispersed metal catalysts. With the understanding of surface coordination chemistry, the molecular mechanisms behind various important effects (e.g., promotional effect of surface ligands on catalysis, support effect in supported metal nanocatalysts) of metal nanomaterials are disclosed.

4.
Angew Chem Int Ed Engl ; 56(38): 11475-11479, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28719109

RESUMO

The largest Ln-Fe metal cluster [Gd12 Fe14 (µ3 -OH)12 (µ4 -OH)6 (µ4 -O)12 (TEOA)6 (CH3 COO)16 (H2 O)8 ]⋅(CH3 COO)2 (CH3 CN)2 ⋅(H2 O)20 (1) and the core-shell monodisperse metal cluster of 1 a@SiO2 (1 a=[Gd12 Fe14 (µ3 -OH)12 (µ4 -OH)6 (µ4 -O)12 (TEOA)6 (CH3 COO)16 (H2 O)8 ]2+ ) were prepared. Experimental and theoretical studies on the magnetic properties of 1 and 1 a@SiO2 reveal that encapsulation of one cluster into one silica nanosphere not only effectively decreases intermolecular magnetic interactions but also significantly increases the zero-field splitting effect of the outer layer Fe3+ ions.

5.
Dalton Trans ; 52(42): 15590-15596, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37791741

RESUMO

Phase engineering is a central subject in materials research. The recent research interest in the phase transition behavior of atomically thin 2D materials reveals the important role of their surface chemistry. In this study, we investigated the phase transformation of ultrathin TiO2(B) nanosheets to anatase under different conditions. We found that the convenient transformation in water under ambient conditions is driven by the hydrolysis of surface 1,2-ethylenedioxy groups and departure of ethylene glycol. A transformation pathway through the formation of protonic titanate is proposed. The ultrathin structure and the metastable nature of the precursor facilitate the phase conversion to anatase. Our finding offers a new insight into the mechanism of TiO2(B) phase transition from the viewpoint of surface chemistry and may contribute to the potential application of ultrathin TiO2(B) nanosheets in aqueous environments.

6.
Small ; 8(24): 3816-22, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22903778

RESUMO

A versatile system combining chemotherapy with photothermal therapy for cancer cells using Pd nanosheet-covered hollow mesoporous silica nanoparticles is reported. While the hollow mesoporous silica core can be used to load anticancer drugs (i.e., doxorubicin) for chemotherapy, the Pd nanosheets on the surface of particles can convert NIR light into heat for photothermal therapy. More importantly, the loading of Pd nanosheets on hollow mesoporous silica nanospheres can dramatically increase the amount of cellular internalization of the Pd nanosheets: almost 11 times higher than the unloaded Pd nanosheets. The as-prepared nanocomposites efficiently deliver both drugs and heat to cancer cells to improve the therapeutic efficiency with minimal side effects. Compared with chemotherapy or photothermal therapy alone, the combination of chemotherapy and phototherapy can significantly improve the therapeutic efficacy, exhibiting a synergistic effect.


Assuntos
Sistemas de Liberação de Medicamentos , Nanoconchas , Neoplasias/terapia , Paládio , Dióxido de Silício , Antineoplásicos/administração & dosagem , Terapia Combinada , Doxorrubicina/administração & dosagem , Células Hep G2 , Temperatura Alta/uso terapêutico , Humanos , Nanocompostos/administração & dosagem , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanoconchas/administração & dosagem , Nanoconchas/química , Nanoconchas/ultraestrutura , Nanotecnologia , Fototerapia
7.
Nat Commun ; 13(1): 2597, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35562193

RESUMO

The interfacial sites of metal-support interface have been considered to be limited to the atomic region of metal/support perimeter, despite their high importance in catalysis. By using single-crystal surface and nanocrystal as model catalysts, we now demonstrate that the overgrowth of atomic-thick Cu2O on metal readily creates a two-dimensional (2D) microporous interface with Pd to enhance the hydrogenation catalysis. With the hydrogenation confined within the 2D Cu2O/Pd interface, the catalyst exhibits outstanding activity and selectivity in the semi-hydrogenation of alkynes. Alloying Cu(0) with Pd under the overlayer is the major contributor to the enhanced activity due to the electronic modulation to weaken the H adsorption. Moreover, the boundary or defective sites on the Cu2O overlayer can be passivated by terminal alkynes, reinforcing the chemical stability of Cu2O and thus the catalytic stability toward hydrogenation. The deep understanding allows us to extend the interfacial sites far beyond the metal/support perimeter and provide new vectors for catalyst optimization through 2D interface interaction.

8.
Research (Wash D C) ; 2020: 4172794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760913

RESUMO

Size effect plays a crucial role in catalytic hydrogenation. The highly dispersed ultrasmall clusters with a limited number of metal atoms are one candidate of the next generation catalysts that bridge the single-atom metal catalysts and metal nanoparticles. However, for the unfavorable electronic property and their interaction with the substrates, they usually exhibit sluggish activity. Taking advantage of the small size, their catalytic property would be mediated by surface binding species. The combination of metal cluster coordination chemistry brings new opportunity. CO poisoning is notorious for Pt group metal catalysts as the strong adsorption of CO would block the active centers. In this work, we will demonstrate that CO could serve as a promoter for the catalytic hydrogenation when ultrasmall Pd clusters are employed. By means of DFT calculations, we show that Pd n (n = 2-147) clusters display sluggish activity for hydrogenation due to the too strong binding of hydrogen atom and reaction intermediates thereon, whereas introducing CO would reduce the binding energies of vicinal sites, thus enhancing the hydrogenation reaction. Experimentally, supported Pd2CO catalysts are fabricated by depositing preestablished [Pd2(µ-CO)2Cl4]2- clusters on oxides and demonstrated as an outstanding catalyst for the hydrogenation of styrene. The promoting effect of CO is further verified experimentally by removing and reintroducing a proper amount of CO on the Pd cluster catalysts.

9.
Nat Nanotechnol ; 15(10): 848-853, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32747741

RESUMO

Hydrogen spillover is a well-known phenomenon in heterogeneous catalysis; it involves H2 cleavage on an active metal followed by the migration of dissociated H species over an 'inert' support1-5. Although catalytic hydrogenation using the spilled H species, namely, spillover hydrogenation, has long been proposed, very limited knowledge has been obtained about what kind of support structure is required to achieve spillover hydrogenation1,5. By dispersing Pd atoms onto Cu nanomaterials with different exposed facets, Cu(111) and Cu(100), we demonstrate in this work that while the hydrogen spillover from Pd to Cu is facet independent, the spillover hydrogenation only occurs on Pd1/Cu(100), where the hydrogen atoms spilled from Pd are readily utilized for the semi-hydrogenation of alkynes. This work thus helps to create an effective method for fabricating cost-effective nanocatalysts with an extremely low Pd loading, at the level of 50 ppm, toward the semi-hydrogenation of a broad range of alkynes with extremely high activity and selectivity.

11.
Nat Commun ; 9(1): 3367, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135546

RESUMO

Metal-support interaction is one of the most important parameters in controlling the catalysis of supported metal catalysts. Silica, a widely used oxide support, has been rarely reported as an effective support to create active metal-support interfaces for promoting catalysis. In this work, by coating Cu microparticles with mesoporous SiO2, we discover that Cu/SiO2 interface creates an exceptional effect to promote catalytic hydrogenation of esters. Both computational and experimental studies reveal that Cu-Hδ- and SiO-Hδ+ species would be formed at the Cu-O-SiOx interface upon H2 dissociation, thus promoting the ester hydrogenation by stablizing the transition states. Based on the proposed catalytic mechanism, encapsulting copper phyllosilicate nanotubes with mesoporous silica followed by hydrogen reduction is developed as an effective method to create a practical Cu nanocatalyst with abundant Cu-O-SiOx interfaces. The catalyst exhibits the best performance in the hydrogenation of dimethyl oxalate to ethylene glycol among all reported Cu catalysts.

12.
Sci Bull (Beijing) ; 63(11): 675-682, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36658816

RESUMO

Atomically dispersing metal atoms on supports has been emerging as an effective strategy to maximize the atom utilization of metals for catalysis. However, due to the lack of effective tools to characterize the detailed structure of metal-support interface, the chemical functions of supports in atomically dispersed metal catalysts are hardly elucidated at the molecular level. In this work, an atomically dispersed Pd1/TiO2 catalyst with Ti(III) vicinal to Pd is prepared and used to demonstrate the direct involvement of metal atoms on support in the catalysis of dispersed metal atoms. Systematic studies reveal that the Ti(III)-O-Pd interface facilitates the activation of O2 into superoxide (O2-), thus promoting the catalytic oxidation. The catalyst exhibits the highest CO turn-over frequency among ever-reported Pd-based catalysts, and enhanced catalysis in the combustion of harmful volatile organic compound (i.e., toluene) and green-house gas (i.e., methane). The demonstrated direct involvement of metal atoms on oxide support suggests that the real active sites of atomically dispersed metal catalysts can be far beyond isolated metal atoms themselves. Metal atoms on oxide supports in the vicinity serve as another vector to promote the catalysis of atomically dispersed metal catalysts.

13.
ChemSusChem ; 11(20): 3591-3598, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30207639

RESUMO

Owing to its capacity for reversible hydrogen storage, formic acid (FA) holds great promise as an alternative energy carrier to conventional fossil fuel systems. Whereas the decomposition of FA to hydrogen (H2 ) and carbon dioxide (CO2 ) through homogeneous catalysis is well established, the selective and efficient dehydrogenation of FA by a robust heterogeneous catalyst remains a challenge. A new heterogeneous ruthenium pincer framework with single-atomic sites was prepared in one step by the direct knitting of a phosphorus-nitrogen PN3 P-pincer ruthenium complex in a porous organic polymer. The heterogeneous ruthenium complex efficiently dehydrogenates formic acid in both organic and aqueous media with remarkably enhanced stability. Notably, no detectable CO was generated and a turnover number (TON) of 145 300 was attained in a continuous experiment with no significant decline in catalytic activity (in sharp contrast, a total TON of only 5600 was obtained with the homogeneous analog under the same conditions). The single-atomic sites in the porous framework combined the desirable attributes of high reactivity and selectivity of a homogeneous catalyst with the significantly enhanced catalyst stability and reusability benefits of heterogeneous catalysis.

14.
Sci Adv ; 3(9): e1701069, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28913427

RESUMO

The electrochemical conversion of CO2 and H2O into syngas using renewably generated electricity is an attractive approach to simultaneously achieve chemical fixation of CO2 and storage of renewable energy. Developing cost-effective catalysts for selective electroreduction of CO2 into CO is essential to the practical applications of the approach. We report a simple synthetic strategy for the preparation of ultrathin Cu/Ni(OH)2 nanosheets as an excellent cost-effective catalyst for the electrochemical conversion of CO2 and H2O into tunable syngas under low overpotentials. These hybrid nanosheets with Cu(0)-enriched surface behave like noble metal nanocatalysts in both air stability and catalysis. Uniquely, Cu(0) within the nanosheets is stable against air oxidation for months because of the presence of formate on their surface. With the presence of atomically thick ultrastable Cu nanosheets, the hybrid Cu/Ni(OH)2 nanosheets display both excellent activity and selectivity in the electroreduction of CO2 to CO. At a low overpotential of 0.39 V, the nanosheets provide a current density of 4.3 mA/cm2 with a CO faradaic efficiency of 92%. No decay in the current is observed for more than 22 hours. The catalysts developed in this work are promising for building low-cost CO2 electrolyzers to produce CO.

15.
Science ; 352(6287): 797-801, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174982

RESUMO

Atomically dispersed noble metal catalysts often exhibit high catalytic performances, but the metal loading density must be kept low (usually below 0.5%) to avoid the formation of metal nanoparticles through sintering. We report a photochemical strategy to fabricate a stable atomically dispersed palladium-titanium oxide catalyst (Pd1/TiO2) on ethylene glycolate (EG)-stabilized ultrathin TiO2 nanosheets containing Pd up to 1.5%. The Pd1/TiO2 catalyst exhibited high catalytic activity in hydrogenation of C=C bonds, exceeding that of surface Pd atoms on commercial Pd catalysts by a factor of 9. No decay in the activity was observed for 20 cycles. More important, the Pd1/TiO2-EG system could activate H2 in a heterolytic pathway, leading to a catalytic enhancement in hydrogenation of aldehydes by a factor of more than 55.

16.
Nanoscale ; 6(12): 6798-804, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24827462

RESUMO

One key challenge in making high-quality bimetallic nanocrystals is to prevent self-nucleation of individual metal components. We report in this work an effective seeded growth strategy that uses activated hydrogen atoms as the reducing agent to prepare core-shell bimetallic nanocrystals. In the developed method, Pd nanocrystals serve as the seed and catalyst as well to activate H2 for the reductive deposition of Ag. The unique feature of the developed method is that the activated hydrogen atoms are confined on the surface of the Pd seeds. Consequently, the self-nucleation of Ag is effectively inhibited so that the deposition of Ag occurs only on Pd. The mechanism studies reveal that reductive growth of Ag on Pd seeds proceeds until the Pd surface is fully covered by Ag. The Ag/Pd ratio in the prepared Pd@Ag nanocrystals is readily fine-tuned by the amount of AgNO3 or H2. The method is effective for depositing Ag on Pd nanocrystal seeds with different morphologies such as nanosheets, nanocubes, tetrahedra and nanowires. More importantly, the deposition of Ag on Pd nanowires allows preparation of flexible transparent electrode material with sheet electronic conductivity of 271 S sq(-1) at a transmittance of over 90%.

17.
J Mater Chem B ; 1(22): 2837-2842, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32260869

RESUMO

Herein we report a drug delivery system based on hollow iron silicate nanospheres. Fe3+ on the nanospheres' surface can effectively bind with doxorubicin (DOX), an anticancer drug, through coordination bonds. The bonds are fairly stable in a neutral environment but could easily break up in an acid environment. The release of DOX from hollow iron silicate nanospheres into cancer cells can be therefore triggered by a pH drop caused by endocytosis. The iron silicate shell allows a DOX loading content of up to 50.2% in weight, which is significantly higher than most drug delivery systems reported. Cell experiments show that DOX-loaded hollow iron silicate nanospheres exhibit a higher efficiency in killing cancer cells than free DOX, and a higher cytotoxicity for human hepatoma cells than hepatocyte cells at the same DOX-loaded nanospheres' concentration. Confocal laser scanning microscopy (CLSM) experiments show the releasing and transportation process of DOX, and confirm the enrichment of DOX in cell nuclei.

18.
ACS Nano ; 6(5): 4434-44, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22502599

RESUMO

The design and synthesis of hollow/yolk-shell mesoporous structures with catalytically active ordered mesoporous shells can infuse new vitality into the applications of these attractive structures. In this study, we report that hollow/yolk-shell structures with catalytically active ordered mesoporous aluminosilica shells can be easily prepared by using silica spheres as the silica precursors. By simply treating with a hot alkaline solution in the presence of sodium aluminate (NaAlO(2)) and cetyltrimethylammonium bromide (CTAB), solid silica spheres can be directly converted into high-quality hollow mesoporous aluminosilica spheres with perpendicular pore channels. On the basis of the proposed formation mechanism of etching followed by co-assembly, the synthesis strategy developed in this work can be extended as a general strategy to prepare ordered mesoporous yolk-shell structures with diverse compositions and morphologies simply by replacing solid silica spheres with silica-coated nanocomposites. The reduction of 4-nitrophenol with yolk-shell structured Au@ordered mesoporous aluminosilica as the catalyst has clearly demonstrated that the highly permeable perpendicular pore channels of mesoporous aluminosilica can effectively prevent the catalytically active yolk from aggregating. Furthermore, with accessible acidity, the yolk-shell structured ordered mesoporous aluminosilica spheres containing Pd yolk exhibit high catalytic activity and recyclability in a one-pot two-step synthesis involving an acid catalysis and subsequent catalytic hydrogenation for desired benzimidazole derivative, which makes the proposed hollow ordered aluminosilica spheres a versatile and practicable scaffold for advanced catalytic nanoreactor systems.

19.
Nanoscale ; 3(4): 1632-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21305093

RESUMO

Hollow mesoporous silica spheres have recently attracted increasing attention. However, effective synthesis of uniform hollow mesoporous spheres with controllable well-defined pore structures for fundamental research and practical applications has remained a significant challenge. In this work, a straightforward and effective "cationic surfactant assisted selective etching" synthetic strategy was developed for the preparation of high-quality hollow mesoporous silica spheres with either wormhole-like or oriented mesoporous shell. The as-prepared hollow mesoporous silica spheres have large surface area, high pore volume, and controllable structure parameters. Our experiments demonstrated that cationic surfactant plays critical roles in forming the hollow mesoporous structure. A formation mechanism involving the etching of solid SiO(2) accelerated by cationic surfactant followed by the redeposition of dissolved silica species directed by cationic surfactant is proposed. Furthermore, the strategy can be extended as a general strategy to transform silica-coated composite materials into yolk-shell structures with either wormhole-like or oriented mesoporous shell.


Assuntos
Cristalização/métodos , Nanosferas/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dióxido de Silício/química , Tensoativos/química , Cátions , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA