Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Europace ; 26(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584395

RESUMO

AIMS: A few studies have reported the effect and safety of pulsed field ablation (PFA) catheters for ablating atrial fibrillation (AF), which were mainly based on basket-shaped or flower-shaped designs. However, the clinical application of a circular-shaped multi-electrode catheter with magnetic sensors is very limited. To study the efficacy and safety of a PFA system in patients with paroxysmal AF using a circular-shaped multi-electrode catheter equipped with magnetic sensors for pulmonary vein isolation (PVI). METHODS AND RESULTS: A novel proprietary bipolar PFA system was used for PVI, which utilized a circular-shaped multi-electrode catheter with magnetic sensors and allowed for three-dimensional model reconstruction, mapping, and ablation in one map. To evaluate the efficacy, efficiency, and safety of this PFA system, a prospective, multi-centre, single-armed, pre-market clinical study was performed. From July 2021 to December 2022, 151 patients with paroxysmal AF were included and underwent PVI. The study examined procedure time, immediate success rate, procedural success rate at 12 months, and relevant complications. In all 151 patients, all the pulmonary veins were acutely isolated using the studied system. Pulsed field ablation delivery was 78.4 ± 41.8 times and 31.3 ± 16.7 ms per patient. Skin-to-skin procedure time was 74.2 ± 29.8 min, and fluoroscopy time was 13.1 ± 7.6 min. The initial 11 (7.2%) cases underwent procedures with deep sedation anaesthesia, and the following cases underwent local anaesthesia. In the initial 11 cases, 4 cases (36.4%) presented transient vagal responses, and the rest were all successfully preventatively treated with atropine injection and rapid fluid infusion. No severe complications were found during or after the procedure. During follow-up, 3 cases experienced atrial flutter, and 11 cases had AF recurrence. The estimated 12-month Kaplan-Meier of freedom from arrhythmia was 88.4%. CONCLUSION: The PFA system, comprised of a circular PFA catheter with magnetic sensors, could rapidly achieve PVI under three-dimensional guidance and demonstrated excellent safety with comparable effects.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Veias Pulmonares/cirurgia , Resultado do Tratamento , Estudos Prospectivos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Catéteres , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Fenômenos Magnéticos , Recidiva
2.
Dalton Trans ; 53(29): 12199-12207, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38973342

RESUMO

Phosphorescent material with narrowband emission is crucial for advancing wide-color-gamut organic light-emitting diodes (OLEDs). In this work, two iridium(III) complexes, (PhthzICz)2Ir(tmd) and (thzICz)2Ir(tmd), using rigid 2-(benzothiazole-2-yl)indolo[3,2,1-jk]carbazole (PhthzICz) and 2-(thiazole-2-yl)indolo[3,2,1-jk]carbazole (thzICz) as cyclometalated ligands and 2,2,6,6-tetramethyl-3,5-heptanedione (tmd) as ancillary ligands, were synthesized. When these complexes were doped into the host material 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl, the doped films exhibited yellow photoluminescence (PL) peaking at 537 and 531 nm, full width at half maximum (FWHM) bands of 35 and 60 nm, and PL quantum yields of 89.9% and 85.9%, respectively. OLEDs based on these two emitters display moderate performance characteristics with maximum external quantum efficiencies of 25.2% and 22.7%. Notably, the device based on (PhthzICz)2Ir(tmd) exhibits a narrow FWHM of 31 nm. Overall, the study highlights the practicality of incorporating rigid groups into the cyclometalated ligands of Ir(III) complexes as a viable strategy for achieving efficient Ir(III) complexes for OLEDs with narrow emission and high efficiency.

3.
Chem Asian J ; : e202400664, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078718

RESUMO

Circularly polarized organic light-emitting diodes (CP-OLEDs) hold significant promise for applications in 3D displays due to the ability to generate circularly polarized luminescence (CPL) directly. In this study, two pairs of circularly polarized thermally activated delayed fluorescence (CP-TADF) enantiomers, named RR/SS-ONCN and RS/SR-ONCN, were synthesized by integrating two distinct chiral groups into the dicyanobenzene unit. The RR/SS-ONCN and RS/SR-ONCN enantiomers show CPL properties with dissymmetry photoluminescence factors (|gPL|) of 1.3 × 10-3 and 2.0 × 10-3 in doped films, respectively. Notably, RR/SS-ONCN exhibit higher |gPL| values than that of RS/SR-ONCN, especially in doped films, indicating that when the configurations of the two chiral groups are identical, the |gPL| value of the CP-TADF materials can be enhanced, demonstrating a certain stacking effect. Moreover, the corresponding CP-OLEDs demonstrate good performances, achieving maximum external quantum efficiencies of up to 21.9% and notable CP electroluminescence with |gEL| factors of up to 1.0 × 10-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA