Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(27): e2303235, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37505484

RESUMO

The responsive control of energy transfer (ET) plays a key role in the broad applications of lanthanide-doped nanomaterials. Photonic crystals (PCs) are excellent materials for ET regulation. Among the numerous materials that can be used to fabricate PCs, chiral nematic liquid crystals are highly attractive due to their good photoelectric responsiveness and biocompatibility. Here, the mechanisms of ET and the photonic effect of chiral nematic structures on ET are introduced; the regulation methods of chiral nematic structures and the resulting changes in ET of lanthanide-doped nanomaterials are highlighted; and the challenges and promising opportunities for ET in chiral nematic structures are discussed.

2.
Int J Biol Macromol ; 225: 1172-1181, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36414081

RESUMO

A new design for chiral photonic cellulose nanocrystal films was developed by co-assembling lanthanide-doped nanorods (NRs) into chiral cellulose nanocrystals, in which the photonic band gap (PBG) could be tuned in the visible range by changing the mass fraction of flexible agents, such as polyvinyl alcohol (PVA) and ethylene glycol (EG). Due to the PBG effect, the luminescence modulation in such nanocrystal films had been realized. The down-conversion luminescence from NaGd30Y60F4:5%Tb3+, 5%Eu3+ NRs and up-conversion luminescence from NaGd40Y40F4:18%Yb3+, 2%Er3+ NRs could be enhanced by 28 % and 18 % respectively, on account of the band edge effect. The luminescence would be inhibited when the luminescence overlapped with the stop band of the PBG. These results implied that the biocompatible photonic cellulose nanocrystal films are ideally suited for applications in optical coding, optical resonators and biocompatible lasers.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Nanotubos , Luminescência , Celulose/química , Nanotubos/química , Nanopartículas/química
3.
ACS Appl Mater Interfaces ; 12(18): 20838-20848, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294380

RESUMO

Soft carbon is attracting tremendous attention as a promising anode material for potassium-ion batteries (PIBs) because of its graphitizable structure and adjustable interlayer distance. Herein, nitrogen/sulfur dual-doped porous soft carbon nanosheets (NSC) have been prepared with coal tar pitch as carbon precursors in an appropriate molten salt medium. The molten salt medium and N/S dual-doping are responsible for the formation of nanosheet-like morphology, abundant microporous channels with a high surface area of 436 m2 g-1, expanded interlamellar spacing of 0.378 nm, and enormous defect-induced active sites. These structural features are crucial for boosting potassium-ion storage performance, endowing the NSC to deliver a high potassiation storage capacity of 359 mAh g-1 at 100 mA g-1 and 115 mAh g-1 at 5.0 A g-1, and retaining 92.4% capacity retention at 1.0 A g-1 after 1000 cycles. More importantly, the pre-intercalation of K atom from the molten salts helps improve the initial Coulombic efficiency to 50%, which outperforms those of the recently reported carbon anode materials with large surface areas. The density functional theory calculations further illuminate that the N/S dual-doping can facilitate the adsorption of K-ion in carbon materials and decrease the ion diffusion energy barrier during the solid-state charge migration.

4.
Polymers (Basel) ; 11(7)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340523

RESUMO

Well-defined polymer brushes attached to nanoparticles offer an elegant opportunity for surface modification because of their excellent mechanical stability, functional versatility, high graft density as well as controllability of surface properties. This study aimed to prepare hybrid materials with good dispersion in different solvents, and to endow this material with certain fluorescence characteristics. Well-defined diblock copolymers poly (styrene)-b-poly (hydroxyethyl methyl acrylate)-co-poly (hydroxyethyl methyl acrylate- rhodamine B) grafted silica nanoparticles (SNPs-g-PS-b-PHEMA-co-PHEMA-RhB) hybrid materials were synthesized via surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). The SNPs surfaces were modified by 3-aminopropyltriethoxysilane (KH-550) firstly, then the initiators 2-Bromoisobutyryl bromide (BIBB) was attached to SNPs surfaces through the esterification of acyl bromide groups and amidogen groups. The synthetic initiators (SNPs-Br) were further used for the SI-ARGET ATRP of styrene (St), hydroxyethyl methyl acrylate (HEMA) and hydroxyethyl methyl acrylate-rhodamine B (HEMA-RhB). The results indicated that the SI-ARGET ATRP initiator had been immobilized onto SNPs surfaces, the Br atom have located at the end of the main polymer chains, and the polymerization process possessed the characteristic of controlled/"living" polymerization. The SNPs-g-PS-b-PHEMA-co-PHEMA-RhB hybrid materials show good fluorescence performance and good dispersion in water and EtOH but aggregated in THF. This study demonstrates that the SI-ARGET ATRP provided a unique way to tune the polymer brushes structure on silica nanoparticles surface and further broaden the application of SI-ARGET ATRP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA