Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35161033

RESUMO

Aimed at improving the electromagnetic (EM) shielding and flame retardancy of cellulose materials, graphene (GE) nanoplates were introduced into cellulose matrix films by blending in1-allyl-3-methylimidazolium chloride. The structure and performance of the obtained composite films were investigated using scanning electron microscopy, X-ray diffraction, thermogravimetric (TG) analysis, EM shielding effectiveness (SE), and combustion tests. GE introduction formed and stacked laminated structures in the films after drying due to controlled shrinkage of the cellulose matrix. The lamination of GE nanoplates into the films was beneficial for providing EM shielding due to multiple internal reflection of EM radiation; furthermore, they also increased flame resistance based on the "labyrinth effect." The SE of these composite films increased gradually with increased GE content and reached 22.3 dB under an incident frequency of 1500 MHz. TG analysis indicated that these composite films possessed improved thermal stability due to GE addition. Reduced flammability was confirmed by their extended times to ignition or inability to be ignited, reduced heat release rates observed in cone calorimetry tests, and increased limiting oxygen index values. These films with improved EM shielding and flame retardancy could be considered potential candidates for multipurpose materials in various applications, such as electronics and radar evasion.

2.
Materials (Basel) ; 12(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654431

RESUMO

One-dimensional, flexible yarn-shaped supercapacitors for woven cloth have the potential for use in different kinds of wearable devices. Nevertheless, the challenge that supercapacitors face is low energy density. In this paper, we present a low-cost and large-scale manufacturing method to construct a supercapacitor yarn with high power and high energy density. To construct the novel and flexible poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)⁻polyacrylonitrile (PDEOT: PSS-PAN)/Ni cotton (PNF/NiC) capacitor yarn, an electrospinning technique was initially used to wrap the polyacrylonitrile (PAN) nanofibers around the core Ni-coated yarn. The PEDOT: PSS⁻PAN nanofiber composite electrode was created using in situ deposition and H3PO4/PVA was used as a gel electrolyte. This electrode material has a yarn/nanofiber/PEDOT: PSS nanoparticle hierarchical structure, providing a high specific area and enhanced pseudocapacitance. The electrode demonstrated a high volumetric capacitance of 26.88 F·cm-3 (at 0.08 A·cm-3), an energy density of 9.56 mWh·cm-3, and a power density of 830 mW·cm-3. In addition, the PNF/NiC capacitor yarns are lightweight, highly flexible, resistant to bending fatigue, can be connected in series or parallel, and may be suitable for a variety of wearable electronic products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA