RESUMO
Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza ruï¬pogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.
Assuntos
Endosperma , Oryza , Grão Comestível/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Homeostase/genética , Oryza/genética , Oryza/metabolismo , OxirreduçãoRESUMO
Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.
Assuntos
Glucosiltransferases , Oryza , Proteínas de Plantas , Sacarose , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Sacarose/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimentoRESUMO
Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.
Assuntos
Mapeamento Cromossômico , Grão Comestível , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Fenótipo , Cromossomos de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimentoRESUMO
Direct methane conversion and, in particular, the aerobic oxidation to acetic acid, remain an eminent challenge. Here, we reported a zeolite-supported Au-Fe catalyst (Au-Fe/ZSM-5) that converted methane to acetic acid with molecular oxygen as an oxidant in the presence of CO. Specifically, Au nanoparticles catalyzed the formation of hydroxyl species from the reaction of CO, O2, and H2O, meanwhile ZSM-5-supported atomically dispersed Fe species were responsible for the hydroxyl-mediated coupling of CH4 and CO to generate acetic acid. The reaction over 50â mg of Au-Fe/ZSM-5 under 62â bar (CH4 : CO : O2=14 : 14 : 3) at 120 °C for 3.0â h yielded 5.7 millimoles of acetic acid per gram of the catalyst (mmol gcat -1) with the selectivity of 92 %, outperformed most of reported catalysts. Significantly, the catalyst remained active even at 60 °C. We anticipate that this hydroxyl-mediated route may guide the design of optimized catalysts for the direct methane functionalization at low temperatures.
RESUMO
Rice blast caused by Magnaporthe oryzae is one of the most serious rice diseases worldwide. The early indica rice thermosensitive genic male sterile (TGMS) line HD9802S has the characteristics of stable fertility, reproducibility, a high outcrossing rate, excellent rice quality, and strong combining ability. However, this line exhibits poor blast resistance and is highly susceptible to leaf and neck blasts. In this study, backcross introduction, molecular marker-assisted selection, gene chipping, anther culture, and resistance identification in the field were used to introduce the broad-spectrum blast-resistance gene R6 into HD9802S to improve its rice blast resistance. Six induction media were prepared by varying the content of each component in the culture medium. Murashige and Skoog's medium with 3 mg/L 2,4-dichlorophenoxyacetic acid, 2 mg/L 1-naphthaleneacetic acid, and 1 mg/L kinetin and N6 medium with 800 mg/L casein hydrolysate, 600 mg/L proline, and 500 mg/L glutamine could improve the callus induction rate and have a higher green seedling rate and a lower white seedling rate. Compared to HD9802S, two doubled haploid lines containing R6 with stable fertility showed significantly enhanced resistance to rice blast and no significant difference in spikelet number per panicle, 1000-grain weight, or grain shape. Our findings highlight a rapid and effective method for improving rice blast resistance in TGMS lines.
Assuntos
Herbicidas , Oryza , Reprodutibilidade dos Testes , Cinetina , Biomarcadores , Genes de Plantas , Oryza/genéticaRESUMO
Grain size is a key determinant of both grain weight and grain quality. Here, we report the map-based cloning of a novel quantitative trait locus (QTL), GLW7.1 (Grain Length, Width and Weight 7.1), which encodes the CCT motif family protein, GHD7. The QTL is located in a 53 kb deletion fragment in the cultivar Jin23B, compared with the cultivar CR071. Scanning electron microscopy analysis and expression analysis revealed that GLW7.1 promotes the transcription of several cell division and expansion genes, further resulting in a larger cell size and increased cell number, and finally enhancing the grain size as well as grain weight. GLW7.1 could also increase endogenous GA content by up-regulating the expression of GA biosynthesis genes. Yeast two-hybrid assays and split firefly luciferase complementation assays revealed the interactions of GHD7 with seven grain-size-related proteins and the rice DELLA protein SLR1. Haplotype analysis and transcription activation assay revealed the effect of six amino acid substitutions on GHD7 activation activity. Additionally, the NIL with GLW7.1 showed reduced chalkiness and improved cooking and eating quality. These findings provide a new insight into the role of Ghd7 and confirm the great potential of the GLW7.1 allele in simultaneously improving grain yield and quality.
Assuntos
Oryza , Alelos , Grão Comestível/genética , Oryza/genética , Oryza/metabolismo , Locos de Características QuantitativasRESUMO
As a staple food for more than half of the world's population, the importance of rice is self-evident. Compared with ordinary rice, rice cultivars with superior eating quality and appearance quality are more popular with consumers due to their unique taste and ornamental value, even if their price is much higher. Appearance quality and CEQ (cooking and eating quality) are two very important aspects in the evaluation of rice quality. Here, we performed a genome-wide association study on floury endosperm in a diverse panel of 533 cultivated rice accessions. We identified a batch of potential floury genes and prioritize one (LOC_Os03g48060) for functional analyses. Two floury outer endosperm mutants (flo19-1 and flo19-2) were generated through editing LOC_Os03g48060 (named as FLO19 in this study), which encodes a class I glutamine amidotransferase. The different performances of the two mutants in various storage substances directly led to completely different changes in CEQ. The mutation of FLO19 gene caused the damage of carbon and nitrogen metabolism in rice, which affected the normal growth and development of rice, including decreased plant height and yield loss by decreased grain filling rate. Through haplotype analysis, we identified a haplotype of FLO19 that can improve both CEQ and appearance quality of rice, Hap2, which provides a selection target for rice quality improvement, especially for high-yield indica rice varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01226-z.
RESUMO
Rice grain shape and yield are usually controlled by multiple quantitative trait loci (QTL). This study used a set of F9-10 recombinant inbred lines (RILs) derived from a cross of Huahui 3 (Bt/Xa21) and Zhongguoxiangdao, and detected 27 QTLs on ten rice chromosomes. Among them, twelve QTLs responsive for grain shape/ or yield were mostly reproducibly detected and had not yet been reported before. Interestingly, the two known genes involved in the materials, with one insect-resistant Bt gene, and the other disease-resistant Xa21 gene, were found to closely link the QTLs responsive for grain shape and weight. The Bt fragment insertion was firstly mapped on the chromosome 10 in Huahui 3 and may disrupt grain-related QTLs resulting in weaker yield performance in transgenic plants. The introgression of Xa21 gene by backcrossing from donor material into receptor Minghui 63 may also contain a donor linkage drag which included minor-effect QTL alleles positively affecting grain shape and yield. The QTL analysis on rice grain appearance quality exemplified the typical events of transgenic or backcrossing breeding. The QTL findings in this study will in the future facilitate the gene isolation and breeding application for improvement of rice grain shape and yield.
RESUMO
BACKGROUND: Wild-abortive cytoplasmic male sterility (CMS-WA) and Honglian CMS (CMS-HL) are the two main CMS types utilized in production of three-line hybrid rice in xian/indica (XI) rice. Dissection of the genetic basis of fertility restoration of CMS-WA and CMS-HL in the core germplasm population would provide valuable gene and material resources for development of three-line hybrid combinations. RESULTS: In this study, two F1 populations with CMS-WA and CMS-HL background respectively were developed using 337 XI and aus accessions being paternal parents. Genome-wide association studies on three fertility-related traits of the two populations for two consecutive years revealed that both fertility restoration of CMS-WA and CMS-HL were controlled by a major locus and several minor loci respectively. The major locus for fertility restoration of CMS-WA was co-located with Rf4, and that for fertility restoration of CMS-HL was co-located with Rf5, which are cloned major restorer of fertility (Rf) genes. Furthermore, haplotype analysis of Rf4, Rf5 and Rf6, the three cloned major Rf genes, were conducted using the 337 paternal accessions. Four main haplotypes were identified for Rf4, and displayed different subgroup preferences. Two main haplotypes were identified for Rf5, and the functional type was carried by the majority of paternal accessions. In addition, eight haplotypes were identified for Rf6. CONCLUSIONS: Haplotype analysis of three Rf genes, Rf4, Rf5 and Rf6, could provide valuable sequence variations that can be utilized in marker-aided selection of corresponding genes in rice breeding. Meanwhile, fertility evaluation of 337 accessions under the background of CMS could provide material resources for development of maintainer lines and restorers.