Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 42(7): 780-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25951228

RESUMO

Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. The P2X3 receptor plays a crucial role in facilitating pain transmission. Intermedin (IMD), which is also known as adrenomedullin 2 (AMD2) is a newly discovered hormone that is a member of the calcitonin/calcitonin gene-related peptide family. The present research investigates the effects of IMD on pain transmission in neuropathic pain states as mediated by P2X3 receptors in dorsal root ganglia (DRG). Chronic constriction injury (CCI) rats were used as the neuropathic pain model. Adult male Sprague-Dawley rats were randomly assigned to five groups as follows: blank control group (Control), sham operation group (Sham), CCI rats treated with saline group (CCI+NS), CCI rats treated with IMD1-53 group (CCI+IMD1-53 ), and CCI rats treated with IMD inhibitor IMD14-47 group (CCI+IMD14-47 ). The mechanical withdrawal threshold (MWT) was tested by the von Frey method, and the thermal withdrawal latency (TWL) was tested via automatic thermal stimulus instruments. Changes in the expression of P2X3 receptors and IMD in CCI rat L4/L5 DRG were detected using immunohistochemistry, reverse transcription-polymerase chain reaction, and Western blotting. After treatment with intrathecal injection (i.t.), mechanical and thermal hyperalgesia in the CCI+IMD1-53 group was maintained, but MWT and TWL in the CCI+IMD14-47 groups increased. The expression levels of P2X3 receptors and IMD in L4/L5 DRG in the CCI+NS and CCI+IMD1-53 groups were significantly increased compared with those in the Control group or the Sham group. After application of IMD14-47 in CCI rats, there was a decrease in the expression levels of P2X3 receptors and IMD in L4/L5 DRG. The phosphorylation of p38 and ERK1/2 in L4/L5 DRG in the CCI+NS group and the CCI+IMD1-53 group was stronger than that in the Control group or the Sham group; however, the phosphorylation of p38 and ERK1/2 in the CCI+IMD14-47 group was much lower than that in the CCI+NS group or the CCI+IMD1-53 group. Our findings indicate that IMD might increase the sensitization effects of IMD on P2X3 receptors to alleviate chronic neuropathic pain injury. The IMD agonist IMD1-53 might enhance nociceptive responses mediated by P2X3 receptors in neuropathic pain, and the IMD inhibitor IMD14-47 could inhibit the sensitization of the P2X3 receptor in chronic neuropathic pain injury.


Assuntos
Adrenomedulina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Adrenomedulina/metabolismo , Adrenomedulina/uso terapêutico , Animais , Constrição , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuralgia/etiologia , Neuralgia/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Yi Chuan ; 35(5): 607-15, 2013 May.
Artigo em Zh | MEDLINE | ID: mdl-23732667

RESUMO

Sterol regulatory element binding protein 1 (SREBP-1) is one of the important nuclear transcription factors. SREBP-1 can maintain lipids dynamic equilibrium by regulating the expression of enzymes required for synthesis of endogenous cholesterol, fatty acids, triglycerides and phospholipids. Anomalies of SREBP-1 and its target genes can cause a series of metabolic diseases such as insulin resistance, type Ⅱ diabetes, heart dysfunction, vascular complications and hepatic steatosis. In these years, the development of high-throughput technologies has greatly expanded our knowledge about SREBP-1 target genes and the pattern of transcriptional regulation. Here we reviewed recent research progress of SREBP-1, with a focus on the protein structure, activation process, DNA binding sites and target genes. Most importantly, we showed the transcriptional regulatory networks based on omics datasets, which will contribute to a better understanding of the role of SREBP-1 in lipid metabolism and provide new clues for the treatment of lipid metabolism disorders.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
3.
Yi Chuan ; 34(2): 198-207, 2012 Feb.
Artigo em Zh | MEDLINE | ID: mdl-22382061

RESUMO

Diabetic neuropathy (DN) is defined as the presence of symptoms and/or signs of peripheral nerve dysfunction in people with diabetes. The aim of this study is to screen differentially expressed genes in peripheral ganglia in early stage type Ⅱ experimental diabetic rats. We compared gene expression profiles of peripheral ganglia in type Ⅱ diabetic and nondiabetic rats based on Illumina® Sentrix® BeadChip arrays. The results showed that 158 out of a total of 12 604 known genes were significantly differentially expressed, including 87 up-regulated and 71 down-regulated genes, in diabetic rats compared with those in the nondiabetic rats. It is noted that some up-regulated genes are involved in the biological processes of neuronal cytoskeleton and motor proteins. In contrast, the down-regulated genes are associated with the response to virus\biotic stimulus\ other organism in diabetic rats. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the most significant pathway enriched in the changed gene set is metabolism (P < 0.001). These results indicated that metabolic changes in peripheral ganglia of diabetic rats could be induced by hyperglycemia. Hyperglycemia could change the expression of genes involved in neuronal cytoskeleton and motor proteins through immune inflammatory response, and then impair the structure and function of the peripheral ganglia.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/metabolismo , Gânglios/metabolismo , Perfilação da Expressão Gênica , Animais , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA