Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Am Chem Soc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837941

RESUMO

The absolute band edge positions and work function (Φ) are the key electronic properties of metal oxides that determine their performance in electronic devices and photocatalysis. However, experimental measurements of these properties often show notable variations, and the mechanisms underlying these discrepancies remain inadequately understood. In this work, we focus on ceria (CeO2), a material renowned for its outstanding oxygen storage capacity, and combine theoretical and experimental techniques to demonstrate environmental modifications of its ionization potential (IP) and Φ. Under O-deficient conditions, reduced ceria exhibits a decreased IP and Φ with significant sensitivity to defect distributions. In contrast, the IP and Φ are elevated in O-rich conditions due to the formation of surface peroxide species. Surface adsorbates and impurities can further augment these variabilities under realistic conditions. We rationalize the shifts in energy levels by separating the individual contributions from bulk and surface factors, using hybrid quantum mechanical/molecular mechanical (QM/MM) embedded-cluster and periodic density functional theory (DFT) calculations supported by interatomic-potential-based electrostatic analyses. Our results highlight the critical role of on-site electrostatic potentials in determining the absolute energy levels in metal oxides, implying a dynamic evolution of band edges under catalytic conditions.

2.
Phys Chem Chem Phys ; 26(20): 14705-14712, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716579

RESUMO

In some metal oxides, an excess electron can give rise to the formation of a small polaron localized on a single site. However, there are still some metal oxides that exhibit the formation of a large polaron. The underlying mechanism behind this phenomenon remains unclear. In this study, we investigate polaron formation in metal oxides favorable for polaron formation using different functionals and through a review of the literature. Our findings indicate that the s valence electrons in cations could serve as a descriptor to classify the polarons in materials. In metal oxides with cations having ns (n ⩾ 5) valence electrons, excess charges trend to localize on several sites or form a two-dimensional shape, and even a large polaron, as these s electrons are delocalized in nature and have a large effect on p or d state polarons. The delocalized nature of ns (n ⩽ 4) valence electrons in cations is relatively small and does not affect the localization condition of p or d state polarons. Therefore, the excess charges in these metal oxides with ns (n ⩽ 4) valence electrons prefer to form a small polaron localizing on a single site. This work unveils the impact of the s valence in cations on polaron formation and provides a fundamental understanding of various types of polarons in metal oxides.

3.
Phys Chem Chem Phys ; 26(3): 2580-2588, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170861

RESUMO

Bismuth vanadate (BiVO4/BVO) has been widely studied as a photocatalytic water splitting semiconductor material in recent years because of its many advantages, such as its ease of synthesis and suitable band gap (2.4 eV). However, BVO still has some disadvantages, one of which is the low photocatalytic water oxidation activity. It is intriguing and unexpected to note that in the current literature, Bi atoms are taken as the oxygen evolution reaction (OER) active sites, while V metal atoms are not investigated in the OER, and the underlying reason for this remains unknown. In this work, using density functional theory (DFT) calculations and ab initio molecular dynamics simulations, we found that in BVO, the VO4 tetrahedron structure is very stable and there is strong surface reconstruction that leads to the V atoms on the surface having the same coordinates as in the bulk. For some high index surfaces, there are some theoretically predicted unsaturated V sites, but it is very easy to form a VO4 tetrahedron structure again by taking oxygen atoms from water. The other intermediates of OER are difficult to adsorb or desorb on this VO4 structure, which makes the V sites in BVO unsuitable as OER active sites. This VO4 structure remained stable during the molecular dynamics simulation at 300 and 673 K. The XPS characterization of various BVO morphologies validates our primary findings from DFT and molecular dynamics simulations. It reveals the presence of unsaturated Bi sites on the BVO surface, while unsaturated V sites are not observed. This study provides novel insights into the enhancement of OER activity of BVO and offers a fundamental understanding of OER activity in other photocatalysts containing V atoms.

4.
Nature ; 558(7710): 415-419, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875407

RESUMO

The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material 1 ) shows exponential attenuation with increasing length 2 , a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated3-5 that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference 6 , a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires 7 , we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon-silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators.

5.
Angew Chem Int Ed Engl ; 62(40): e202308411, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37503936

RESUMO

Determining the absolute band edge positions in solid materials is crucial for optimising their performance in wide-ranging applications including photocatalysis and electronic devices. However, obtaining absolute energies is challenging, as seen in CeO2 , where experimental measurements show substantial discrepancies in the ionisation potential (IP). Here, we have combined several theoretical approaches, from classical electrostatics to quantum mechanics, to elucidate the bulk and surface contributions to the IP of metal oxides. We have determined a theoretical bulk contribution to the IP of stoichiometric CeO2 of only 5.38 eV, while surface orientation results in intrinsic IP variations ranging from 4.2 eV to 8.2 eV. Highly tuneable IPs were also found in TiO2 , ZrO2 , and HfO2 , in which surface polarisation plays a pivotal role in long-range energy level shifting. Our analysis, in addition to rationalising the observed range of experimental results, provides a firm basis for future interpretations of experimental and computational studies of oxide band structures.

6.
Chemphyschem ; 23(6): e202100859, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35112771

RESUMO

TaON and Ta3 N5 are considered promising materials for photocatalytic and photoelectrochemical water splitting. In contrast, their counterpart Ta2 O5 does not exhibit good photocatalytic performance. This may be explained with the different charge carrier transport mechanisms in these materials, which are not well understood yet. Herein, we investigate the charge transport properties in Ta2 O5 , TaON, and Ta3 N5 by polaron hopping and bandlike models. First, the polaron binding energies were calculated to evaluate whether the small polaron occurs in these materials. Then we performed calculations to localize the excess carriers as small polarons using a hybrid density functional. We find that the small polaron hopping is the charge transfer mechanism in Ta2 O5, whereas our calculations indicate that this mechanism may not occur in TaON and Ta3 N5 . We also investigated the bandlike model mechanism by calculating the charge carrier mobility of these materials using the effective mass approximation, but the calculated mobility is not consistent with experimental results. This study is a first step towards understanding charge transport in oxynitrides and nitrides and furthermore establishes a simple rule to determine whether a small polaron occurs in a material.


Assuntos
DNA , Conversão Gênica , DNA/química , Água/química
7.
Phys Chem Chem Phys ; 24(17): 10168-10174, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35420092

RESUMO

The quantum size and spin-orbit coupling (SOC) effects play an important role in the electronic structure of photocatalytic materials with heavy elements such as Bi, Pb, Ir, Te, Sb, Sn, etc. How these two effects affect the conduction band (CB) or the valence band (VB) edge of a photocatalyst is not well understood. In this work, we investigated the quantum size and SOC effects on the CB and VB edges of BiVO4 (BVO) with a thickness of several atomic layers. The BVO is a good water oxidation photocatalyst but doesn't have the hydrogen reduction ability. We find that when the thickness of a BVO layer is smaller than 0.64 nm, the CB edge upshifts significantly because of the quantum size effect. But after including the SOC effect, the CB edge remains almost unchanged. The CB edge of BVO upshifts above the equilibrium redox potentials for H2/H2O with a thickness of ∼0.64 to 1.28 nm. Within this thickness, only the quantum size effect dominates and the SOC effect is very weak. Both the quantum size and SOC effects are insignificant as the thickness of the BVO layers increases to be larger than 1.28 nm. The results presented here provide an essential step toward the understanding and rational design of photocatalysts from both the quantum size and SOC effects.

8.
Phys Chem Chem Phys ; 24(22): 13999-14006, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35635533

RESUMO

Anion vacancies are common defects in materials, and they are usually much more stable on the outermost surface. These vacancies are sometimes taken as active sites in some reactions during catalysis. During the oxygen evolution reaction (OER), these vacancies may be healed by oxygen atoms from water. But this healing process is not well understood yet. In this work, we investigated the details of the anion vacancy healing process in the OER using TaON and Ta3N5 as models. In the OER process, we found that the vacancies are stable and cannot be healed without an applied potential. But with the equilibrium potential of 1.23 V, the vacancies on the outermost top surface will be healed. The oxygen vacancies, after healing, revert back to a clean surface. The nitrogen vacancies become an oxygen doped surface after vacancy healing. We also investigated the vacancy healing process on other well-known photocatalysts, like TiO2, BiVO4, WO3, α-Fe2O3, NaTaO3 and SrTiO3, and we found that the vacancies on the top surface of these materials will also be healed in the OER with an applied equilibrium potential of 1.23 V. The results presented here could expand to other materials used for the OER in (photo) electro-catalysis and photocatalysis. This work provides a new insight for understanding the role of vacancies in the OER.

9.
Phys Chem Chem Phys ; 24(37): 22918-22927, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124908

RESUMO

Bi2WO6 (BWO) is considered as a promising material for photocatalytic water splitting. Its unique layered structure leads the charge separation, and transport is different from other materials. However, the charge transport mechanisms in BWO are not well understood. In this work, we investigated polaron formation and transport in BWO using the DFT+U and hybrid PBE0 functional approaches. We found that the electron will form 2-dimensional (2D)-shaped polarons among W sites in the ab plane of BWO with approximately 55% polaron density state on the central W site. This type of polaron is similar to the electron polarons in WO3. For other W-based materials, the electrons may also form a 2D-shaped polaron. We found that the W 6s orbital plays an important role in these 2D-shaped electron polarons. The calculated mobility of electron polarons in BWO was consistent with experimental findings. For the hole state, it could form a small hole polaron on the O site with O 2p in character. However, it will not form a polaron on the Bi site, which is quite different from BiVO4. This study provides insight for understanding polaron formation and transport in materials with W and Bi ions. It also provides understanding regarding charge separation and transport for materials with layered structures.

10.
Nano Lett ; 21(24): 10333-10340, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34874740

RESUMO

Here, six phenanthrene (the smallest arm-chair graphene nanoribbon) derivatives with dithiomethyl substitutions at different positions as the anchoring groups were synthesized. Scanning tunneling microscopy break junction technique was used to measure their single molecule conductances between gold electrodes, which showed a difference as much as 20-fold in the range of ∼10-2.82 G0 to ∼10-4.09 G0 following the trend of G2,7 > G3,6 > G2,6 > G1,7 > G1,6 > G1,8. DFT calculations agree well with this measured trend and indicate that the single molecule conductances are a combination of energy alignment, electronic coupling, and quantum effects. This significant regio- and steric effect on the single molecule conductance of phenanthrene model molecules shows the complexity in the practice of graphene nanoribbons as building blocks for future carbon-based electronics in one hand but also provides good conductance tunability on the other hand.


Assuntos
Nanotubos de Carbono , Fenantrenos , Eletrônica , Microscopia de Tunelamento , Nanotecnologia
11.
Nano Lett ; 20(10): 7333-7341, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32881527

RESUMO

N-doping of graphdiyne with atomic precision is very important for the study of heteroatom doping effect and the structure-properties relationships of graphdiyne. Here we report the bottom-up synthesis and characterizations of high-quality pyrazinoquinoxaline-based graphdiyne (PQ-GDY) film. First-principle studies of the layered structure were performed to examine the stacking mode, lithium binding affinity, and bulk lithium storage capacity. Three-stage insertion of 14 lithium atoms with binding affinities in the order of pyrazine nitrogen > diyne carbon > central aromatic ring were confirmed by both lithium-ion half-cell measurements and DFT calculations. More than half of the lithium atoms preferentially bind to pyrazine nitrogen, and a reversible capacity of 570.0 mA h g-1 at a current density of 200 mA g-1 after 800 cycles was achieved. Such a high capacity utilization rate of 97.2% provides a good case study of N-doped GDY with atomic precision.

12.
Angew Chem Int Ed Engl ; 59(34): 14303-14307, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32495388

RESUMO

This study explores a new mode of contortion in perylene diimides where the molecule is bent, like a bow, along its long axis. These bowed PDIs were synthesized through a facile fourfold Suzuki macrocyclization with aromatic linkers and a tetraborylated perylene diimide that introduces strain and results in a bowed structure. By altering the strings of the bow, the degree of bending can be controlled from flat to highly bent. Through spectroscopy and quantum chemical calculations, it is demonstrated that the energy of the lowest unoccupied orbital can be controlled by the degree of bending in the structures and that the energy of the highest occupied orbital can be controlled to a large extent by the constitution of the aromatic linkers. The important finding is that the bowing results not only in red-shifted absorptions but also more facile reductions.

13.
J Am Chem Soc ; 141(39): 15471-15476, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31500410

RESUMO

The single-molecule conductance of silanes is suppressed due to destructive quantum interference in conformations with cisoid dihedral angles along the molecular backbone. Yet, despite the structural similarity, σ-interference effects have not been observed in alkanes. Here we report that the methyl substituents used in silanes are a prerequisite for σ-interference in these systems. Through density functional theory calculations, we find that the destructive interference is not evident to the same extent in nonmethylated silanes. We find the same is true in alkanes as the transmission is significantly suppressed in permethylated cyclic and bicyclic alkanes. Using scanning tunneling microscope break-junction method we determine the single-molecule conductance of functionalized cyclohexane and bicyclo[2.2.2]octane that are found to be higher than that of equivalent permethylated silanes. Rather than the difference between carbon and silicon atoms in the molecular backbones, our calculations reveal that it is primarily the difference between hydrogen and methyl substituents that result in the different electron transport properties of nonmethylated alkanes and permethylated silanes. Chemical substituents play an important role in determining the single-molecule conductance of saturated molecules, and this must be considered when we improve and expand the chemical design of insulating organic molecules.

14.
J Am Chem Soc ; 141(33): 13143-13147, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31357860

RESUMO

Singlet fission, the generation of two triplet excited states from the absorption of a single photon, may potentially increase solar energy conversion efficiency. A major roadblock in realizing this potential is the limited number of molecules available with high singlet fission yields and sufficient chemical stability. Here, we demonstrate a strategy for developing singlet fission materials in which we start with a stable molecular platform and use strain to tune the singlet and triplet energies. Using perylene diimide as a model system, we tune the singlet fission energetics from endoergic to exoergic or iso-energetic by straining the molecular backbone. The result is an increase in the singlet fission rate by 2 orders of magnitude. This demonstration opens a door to greatly expanding the molecular toolbox for singlet fission.

15.
J Org Chem ; 84(5): 2713-2720, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30734564

RESUMO

A new method for the effective synthesis of coronene tetracarboxydiimide (CDI) was developed by utilizing inexpensive and nontoxic potassium vinyltrifluoroborate. Controllable brominations of CDI were accomplished to yield CDI mono-, di-, tri-, and tetra-bromides, which could be used as synthon and functionalized by aromatic nucleophilic substitution and the Sonogashira coupling reaction.

16.
J Am Chem Soc ; 140(44): 15080-15088, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30372051

RESUMO

Linear silanes are efficient molecular wires due to strong σ-conjugation in the transoid conformation; however, the structure-function relationship for the conformational dependence of the single-molecule conductance of silanes remains untested. Here we report the syntheses, electrical measurements, and theoretical characterization of four series of functionalized cyclic and bicyclic silanes including a cyclotetrasilane, a cyclopentasilane, a bicyclo[2.2.1]heptasilane, and a bicyclo[2.2.2]octasilane, which are all extended by linear silicon linkers of varying length. We find an unusual variation of the single-molecule conductance among the four series at each linker length. We determine the relative conductance of the (bi)cyclic silicon structures by using the common length dependence of the four series rather than comparing the conductance at a single length. In contrast with the cyclic π-conjugated molecules, the conductance of σ-conjugated (bi)cyclic silanes is dominated by a single path through the molecule and is controlled by the dihedral angles along this path. This strong sensitivity to molecular conformation dictates the single-molecule conductance of σ-conjugated silanes and allows for systematic control of the conductance through molecular design.

17.
J Am Chem Soc ; 139(34): 11771-11778, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28777568

RESUMO

Plasmonic photocatalysis, stemming from the effective light absorbance and confinement of surface plasmons, provides a pathway to enhance solar energy conversion. Although the plasmonic hot electrons in water reduction have been extensively studied, exactly how the plasmonic hot holes participate in the water splitting reaction has not yet been well understood. In particular, where the plasmonic hot holes participate in water oxidation is still illusive. Herein, taking Au/TiO2 as a plasmonic photocatalyst prototype, we investigated the plasmonic hot holes involved in water oxidation. The reaction sites are positioned by photodeposition together with element mapping by electron microscopy, while the distribution of holes is probed by surface photovoltage imaging with Kelvin probe force microscopy. We demonstrated that the plasmonic holes are mainly concentrated near the gold-semiconductor interface, which is further identified as the reaction site for plasmonic water oxidation. Density functional theory also corroborates these findings by revealing the promotion role of interfacial structure (Ti-O-Au) for oxygen evolution. Furthermore, the interfacial effect on plasmonic water oxidation is validated by other Au-semiconductor photocatalytic systems (Au/SrTiO3, Au/BaTiO3, etc.).

18.
J Am Chem Soc ; 138(34): 10726-9, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27529565

RESUMO

Electron transfer processes from semiconductor to molecular catalysts was studied in a model hybrid photocatalytic hydrogen evolution system composed of [Co((III))(dmgH)2PyCl] (CoPy) and CdS under different pH conditions. Thermodynamic and kinetic studies revealed that photocatalytic H2 evolution under high pH conditions (pH 13.5) can only account for the thermodynamically more favorable single-step simultaneous two-electron transfer from photoirradiated CdS to Co(III)Py to produce unavoidable intermediate Co(I)Py, rather than a two-step successive one-electron transfer process. This finding not only provides new insight into the charge transfer processes between semiconductors and molecular catalysts but also opens up a new avenue for the assembly and optimization of semiconductor-molecular catalyst hybrid systems processed through multielectron transfer processes.

19.
J Membr Biol ; 249(6): 713-741, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27586664

RESUMO

It is now clear that connexin-based, gap junction "hemichannels" in an undocked state are capable of opening and connecting cytoplasm to the extracellular milieu. Varied studies also suggest that such channel activity plays a vital role in diverse cell processes and abnormal hemichannel activity contributes to pathogenesis. To pursue fundamental questions in this area, investigators require methods for studying hemichannel permeability and dynamics that are quantitative, sensitive, versatile, and available to most cellular and molecular laboratories. Here we first provide a theoretical background for this work, including the role of cellular membrane potentials. We then describe in detail our computer-assisted methods for both dye uptake and leakage along with illustrative results from different cell systems. A key feature of our protocol is the inclusion of a mechanical stimulation step. We describe dye uptake, interpreted as connexin dependent, that is shown to be enhanced with reduced extracellular Ca2+, mechanically responsive, inhibited by TPA, inhibited by EL186 antibodies for Cx43 and sustained for more than 15 min following mechanical stimulation. We describe dye leakage that displays these same properties, with estimates of hemichannel numbers per cell being derived from leakage rates. We also describe dye uptake that is shown to be unaffected by a reduction in external Ca2+, insensitive to EL186 antibodies and relatively short-lived following mechanical stimulation; this uptake may occur via pannexin 1 channels expressed in the cells studied here. It is unlikely that cell damage plays a significant role in dye uptake following mechanical stimulation, given compelling results from various control experiments.


Assuntos
Conexinas/metabolismo , Algoritmos , Animais , Transporte Biológico , Cálcio/metabolismo , Linhagem Celular , Corantes/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Junções Comunicantes/metabolismo , Expressão Gênica , Humanos , Cinética , Camundongos , Microscopia de Fluorescência , Modelos Teóricos , Permeabilidade
20.
J Am Chem Soc ; 137(31): 9982-7, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26225639

RESUMO

We present here a new design motif for strained, conjugated macrocycles that incorporates two different aromatics into the cycle with an -A-B-A-B- pattern. In this study, we demonstrate the concept by alternating electron donors and acceptors in a conjugated cycle. The donor is a bithiophene, and the acceptor is a perylene diimide derivative. The macrocycle formed has a persistent elliptiform cavity that is lined with the sulfur atoms of the thiophenes and the π-faces of the perylene diimide. Due to the linkage of the perylene diimide subunits, the macrocycles exist in both chiral and achiral forms. We separate the three stereoisomers using chiral high-performance liquid chromatography and study their interconversion. The mechanism for interconversion involves an "intramolecular somersault" in which one of the PDIs rotates around its transverse axis, thereby moving one of its diimide heads through the plane of the cavity. These unusual macrocycles are black in color with an absorption spectrum that spans the visible range. Density functional theory calculations reveal a photoinduced electron transfer from the bithiophene to the perylene diimide.


Assuntos
Desenho de Fármacos , Compostos Macrocíclicos/química , Estresse Mecânico , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA