RESUMO
The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.
Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Pré-Eclâmpsia , Trofoblastos , Trofoblastos/metabolismo , Feminino , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fusão Celular , Placenta/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genéticaRESUMO
BACKGROUND: The syncytiotrophoblast (SCT) layer in the placenta serves as a crucial physical barrier separating maternal-fetal circulation, facilitating essential signal and substance exchange between the mother and fetus. Any abnormalities in its formation or function can result in various maternal syndromes, such as preeclampsia. The transition of proliferative villous cytotrophoblasts (VCT) from the mitotic cell cycle to the G0 phase is a prerequisite for VCT differentiation and their fusion into SCT. The imprinting gene P57Kip2, specifically expressed in intermediate VCT capable of fusion, plays a pivotal role in driving this key event. Moreover, aberrant expression of P57Kip2 has been linked to pathological placental conditions and adverse fetal outcomes. METHODS: Validation of STK40 interaction with P57Kip2 using rigid molecular simulation docking and co-immunoprecipitation. STK40 expression was modulated by lentivirus in BeWo cells, and the effect of STK40 on trophoblast fusion was assessed by real-time quantitative PCR, western blot, immunofluorescence, and cell viability and proliferation assays. Co-immunoprecipitation, transcriptome sequencing, and western blot were used to determine the potential mechanisms by which STK40 regulates P57Kip2. RESULTS: In this study, STK40 has been identified as a novel interacting protein with P57Kip2, and its expression is down-regulated during the fusion process of trophoblast cells. Overexpressing STK40 inhibited cell fusion in BeWo cells while stimulating mitotic cell cycle activity. Further experiments indicated that this effect is attributed to its specific binding to the CDK-binding and the Cyclin-binding domains of P57Kip2, mediating the E3 ubiquitin ligase COP1-mediated ubiquitination and degradation of P57Kip2. Moreover, abnormally high expression of STK40 might significantly contribute to the occurrence of preeclampsia. CONCLUSIONS: This study offers new insights into the role of STK40 in regulating the protein-level homeostasis of P57Kip2 during placental development.
Assuntos
Fusão Celular , Inibidor de Quinase Dependente de Ciclina p57 , Proteínas Serina-Treonina Quinases , Trofoblastos , Ubiquitina-Proteína Ligases , Ubiquitinação , Feminino , Humanos , Gravidez , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteólise , Trofoblastos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genéticaRESUMO
Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.
Assuntos
Apoptose , Benzo(a)pireno , Células da Granulosa , NF-kappa B , Fator 2 Associado a Receptor de TNF , Feminino , Animais , Apoptose/efeitos dos fármacos , Camundongos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , NF-kappa B/metabolismo , Gravidez , Benzo(a)pireno/toxicidade , Fator 2 Associado a Receptor de TNF/metabolismo , Caspase 1/metabolismo , Disruptores Endócrinos/toxicidade , Transdução de Sinais/efeitos dos fármacos , HumanosRESUMO
Uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects. Recent advances in molecular technologies have allowed the unprecedented mapping of epigenetic modifications during embryo implantation. DNA methyltransferase 3a (DNMT3A) and DNMT3B are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. It was reported that conditional knockout of Dnmt3a in the uterus does not markedly affect endometrial function during embryo implantation, but the tissue-specific functions of Dnmt3b in the endometrium during embryo implantation remain poorly understood to investigate the role of Dnmt3b during peri-implantation period. Here, we generated Dnmt3b conditional knockout (Dnmt3bd/d) female mice using progesterone receptor-Cre mice and examined the role of Dnmt3b during embryo implantation. Dnmt3bd/d female mice exhibited compromised fertility, which was associated with defective decidualization, but not endometrial receptivity. Furthermore, results showed loss of Dnmt3b did not lead to altered genomic methylation patterns of the decidual endometrium during early pregnancy. Transcriptome sequencing analysis of uteri from day 6 pregnant mice identified phosphoglycerate kinase 1 (Pgk1) as one of the most variable genes in Dnmt3bd/d decidual endometrium. Potential roles of PGK1 in the decidualization process during early pregnancy were confirmed. Lastly, the compromised decidualization upon the downregulation of Dnmt3b could be reversed by overexpression of Pgk1. Collectively, our findings indicate that uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects.
Assuntos
Decídua , Útero , Animais , Feminino , Camundongos , Gravidez , Decídua/fisiologia , Metilação de DNA/genética , Implantação do Embrião/fisiologia , Endométrio/metabolismo , DNA Metiltransferase 3BRESUMO
Endoreplication, known as endocycles or endoreduplication, is a cell cycle variant in which the genomic DNA is re-replicated without mitosis leading to polyploidy. Endoreplication is essential for the development and functioning of the different organs in animals and plants. Deletion of Geminin, a DNA replication licensing inhibitor, causes DNA re-replication or damage. However, the role of Geminin in endoreplication is still unclear. Here, we studied the role of Geminin in the endoreplication of the silk gland cells of silkworms by constructing two transgenic silkworm strains, including BmGeminin1-overexpression and BmGeminin1-RNA interference. Interference of BmGeminin1 led to body weight gain, increased silk gland volume, increased DNA content, and enhanced DNA re-replication activity relative to wild-type Dazao. Meanwhile, overexpression of BmGeminin1 showed an opposite phenotype compared to the BmGem1-RNAi strain. Furthermore, RNA-sequencing of the transgenic strains was carried out to explore how BmGeminin1 regulates DNA re-replication. Our data demonstrated a vital role of Geminin in the regulation of endoreplication in the silk gland of silkworms.
Assuntos
Bombyx/genética , Replicação do DNA/genética , Geminina/genética , Seda/genética , Animais , Bombyx/metabolismo , Ciclo Celular/genética , Geminina/antagonistas & inibidores , Mitose/genética , Interferência de RNA , Seda/biossínteseRESUMO
PURPOSE: Fetal growth restriction (FGR) is a common complication characterized by impaired placental function and unfavorable pregnancy outcomes. This study aims to elucidate the expression pattern of miR-181d-5p in FGR placentas and explore its effects on trophoblast fusion. METHODS: The expression pattern of miR-181d-5p in human FGR placentas were evaluated using qRT-PCR. Western blot, qRT-PCR, and Immunofluorescence analysis were performed in a Forskolin (FSK)-induced BeWo cell fusion model following the transfection of miR-181d-5p mimic or inhibitor. Potential target genes for miR-181d-5p were identified by screening miRNA databases. The interaction between miR-181d-5p and Luman/CREB3 Recruitment Factor (CREBRF) was determined through a luciferase assay. Moreover, the effect of CREBRF on BeWo cell fusion was examined under hypoxic conditions. RESULTS: Aberrant up-regulation of miR-181d-5p and altered expression of trophoblast fusion makers, including glial cell missing 1 (GCM1), Syncytin1 (Syn1), and E-cadherin (ECAD), were found in human FGR placentas. A down-regulation of miR-181d-5p expression was observed in the FSK-induced BeWo cell fusion model. Transfection of the miR-181d-5p mimic resulted in the inhibition of BeWo cell fusion, characterized by a down-regulation of GCM1 and Syn1, accompanied by an up-regulation of ECAD. Conversely, the miR-181d-5p inhibitor promoted BeWo cell fusion. Furthermore, miR-181d-5p exhibited negative regulation of CREBRF, which was significantly down-regulated in the hypoxia-induced BeWo cell model. The overexpression of CREBRF was effectively ameliorated the impaired BeWo cell fusion induced by hypoxia. CONCLUSIONS: Our study demonstrated that miR-181d-5p, which is elevated in FGR placenta, inhibited the BeWo cell fusion through negatively regulating the expression of CREBRF.
Assuntos
MicroRNAs , Placenta , Humanos , Feminino , Gravidez , Placenta/metabolismo , Trofoblastos/metabolismo , Retardo do Crescimento Fetal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Proliferação de Células/genéticaRESUMO
Human cytotrophoblast (CTB) differentiation into syncytiotrophoblast (STB) is essential for placental formation and function. Understanding the molecular mechanisms involved in trophoblast differentiation is necessary as it would help in the development of novel therapeutic agents to treat placentation-mediated pregnancy complications. In this study, we found a common upregulated gene, ADAM-like Decysin-1 (ADAMDEC1), from five published microarray and RNA-sequencing datasets. Interference to ADAMDEC1 impaired forskolin-induced BeWo cells differentiation, while ADAMDEC1 overexpression promoted BeWo cells and 3D JEG-3 spheroids differentiation. Interestingly, ADAMDEC1 may inhibit Thrombospondin 1 rather than E-cadherin to trigger the activation of the cAMP signal pathway during CTB differentiation into STB. More importantly, a decreasing in ADAMDEC1 might be involved in the development of preeclampsia. Therefore, ADAMDEC1 is expected to become a new target for prediction of and intervention in placenta-derived pregnancy diseases.
Assuntos
Pré-Eclâmpsia , Trofoblastos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , Placenta , Placentação/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/metabolismoRESUMO
Inadequate trophoblast proliferation, shallow invasion and exaggerated rate of trophoblast apoptosis are implicated in early recurrent miscarriage (ERM). However, the mechanistic bases of this association have not been fully established. We aimed at investigating the involvement of fascin, an actin-bundling protein, in trophoblast activities and ERM. We found that fascin was downregulated in the cytotrophoblasts (CTBs) and distal cytotrophoblasts (DCTs) of ERM placentae. Knockdown of fascin altered cellular and nucleolar morphology, and inhibited the proliferation but increased apoptosis of trophoblastic HTR8/SVneo cells. Furthermore, fascin knockdown decreased the expression of transcription factors such as Snail1/2, Twist and Zeb1/2, mesenchymal molecules such as Vimentin and N-cadherin, and the protein expression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylates signal transducer and activator of transcript 3 (STAT3). Exposure of HTR-8/SVneo cells to hypoxia reoxygenation (H/R) decreased fascin expression to affect the cells' invasion. Our results indicate for the first time that the downregulation of fascin is involved in the pathogenesis of early recurrent miscarriage; and hence a potential therapeutic target against the disease.
Assuntos
Proteínas de Transporte/metabolismo , Proliferação de Células/fisiologia , Vilosidades Coriônicas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Placenta/metabolismo , Aborto Habitual/metabolismo , Movimento Celular/fisiologia , Regulação para Baixo , Feminino , Humanos , Fosforilação , Gravidez , Transdução de Sinais/fisiologiaRESUMO
Objective: To explore the effects of hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA) on the migration and invasion of HTR-8/SVneo cells, a human trophoblast cell line, and its potential mechanism of action. Methods: Immunofluorescence staining was done to evaluate the expression levels of HADHA in samples of normal villi and recurrent spontaneous abortion (RSA) villi at 6-8 weeks. Lentiviral infection system was used to construct stable HTR-8/SVneo cell lines with HADHA overexpression and knockdown. Western blot, qRT-PCR, Wound-healing assay, and Transwell assay were used to determine the effect of HADHA on the migration and invasion of HTR-8/SVneo cells and the expression of relevant genes. Transcriptome sequencing and bioinformatics analysis were done to screen for the potential target genes and signaling pathways regulated by HADHA. The specific molecular mechanism of how HADHA regulates the migration and invasion of HTR-8/SVneo cells was examined by adding the inhibitor of protein kinase B (PKB/AKT). Results: HADHA was highly expressed in extravillous trophoblasts (EVT) of RSA villus samples as compared with samples from the normal control group. In HTR-8/SVneo cells overexpressing HADHA, the expression levels of migration and invasion-related genes, including HLA-G, MMP2, MMP9, and NCAD, were decreased (P<0.01,P<0.05), and the migration and invasion abilities of HTR-8/SVneo cells were weakened (P<0.05). HADHA knockdown increased the expression levels of HLA-G, MMP2, MMP9, and NCAD (P<0.01, P<0.05), and promoted the migration and invasion of HTR-8/SVneo cells (P<0.05). In addition, HADHA overexpression decreased the phosphorylation levels of PI3K and AKT (P<0.05) and inhibited the PI3K/AKT signaling pathway. HADHA knockdown activated the PI3K/AKT signaling pathway. When MK-2206, an AKT inhibitor, was added to stable HTR-8/SVneo cell lines with HADHA knockdown, the migration and invasion of the cells were significantly reduced. Conclusion: HADHA inhibits the migration and invasion of HTR-8/SVneo cells by inhibiting the PI3K/AKT signaling pathway.
Assuntos
Pré-Eclâmpsia , Proteínas Proto-Oncogênicas c-akt , Movimento Celular/fisiologia , Coenzima A/metabolismo , Coenzima A/farmacologia , Feminino , Antígenos HLA-G/metabolismo , Antígenos HLA-G/farmacologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Trofoblastos/metabolismoRESUMO
Ephrins are ligands of Eph receptors (Ephs); both of which are sorted into two classes, A and B. There are five types of ephrin-As (ephrin-A1-5) and three types of ephrin-Bs (ephrin-B1-3). Also, there are 10 types of EphAs (EphA1-10) and six types of EphBs (EphB1-6). Binding of ephrins to the Eph receptors activates signaling cascades that regulate several biological processes such as cellular proliferation, differentiation, migration, angiogenesis, and vascular remodeling. Clarification of their roles in the female reproductive system is crucial to understanding the physiology and pathology of this system. Such knowledge will also create awareness regarding the importance of these molecules in diagnostic, prognostic, and therapeutic medicine. Hence, we have discussed the involvement of these molecules in the physiological and pathological events that occur within the female reproductive system. The evidence so far suggests that the ephrins and the Eph receptors modulate folliculogenesis, ovulation, embryo transport, implantation, and placentation. Abnormal expression of some of these molecules is associated with polycystic ovarian syndrome, ovarian cancer, tubal pregnancy, endometrial cancer, uterine leiomyoma (fibroids), cervical cancer, and preeclampsia, suggesting the need to utilize these molecules in the clinical setting. To enhance a quick development of this gradually emerging field in female reproductive medicine, we have highlighted some "gaps in knowledge" that need prospective investigation.
Assuntos
Efrinas/metabolismo , Receptores da Família Eph/metabolismo , Transdução de Sinais/fisiologia , Útero/metabolismo , Animais , Implantação do Embrião/fisiologia , Feminino , HumanosRESUMO
The syncytiotrophoblast, derived from cytotrophoblast fusion, is responsible for maternal-fetal exchanges, secretion of pregnancy-related hormones, and fetal defense against pathogens. Inadequate cytotrophoblast fusion can lead to pregnancy disorders, such as preeclampsia and fetal growth restriction. However, little is known about the mechanism of cytotrophoblast fusion in both physiological and pathological pregnancy conditions. In this study, P57kip2 (P57), a cell cycle-dependent kinase inhibitor that negatively regulates the cell cycle, was found to be up-regulated during the process of syncytialization in both primary trophoblast cells and BeWo cells. Co-immunofluorescence with proliferation markers Ki67 and Cyclin-CDK factors further showed that P57 specifically localizes in the post-mitotic cytotrophoblast subtype of the early pregnancy villi. Overexpression of P57 promoted trophoblast syncytialization by arresting the cell cycle at the G1/G0 phase and inhibiting proliferation. Blocking of the cell cycle through a serum starvation culture resulted in an enhancement of cytotrophoblast fusion and the up-regulation of P57. In both spontaneous cytotrophoblast fusion and forskolin-induced BeWo cell fusion models, an initial up-regulation of P57 was observed followed by a subsequent down-regulation. These findings indicate that proper expression of P57 at cytotrophoblast differentiation nodes plays an important role in trophoblast syncytialization.
Assuntos
Pontos de Checagem do Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Placenta/fisiologia , Trofoblastos/fisiologia , Fusão Celular , Inibidor de Quinase Dependente de Ciclina p57/genética , Feminino , Humanos , Placenta/citologia , Gravidez , Trofoblastos/citologiaRESUMO
Cell division cycle protein 37 (Cdc37) is a molecular chaperone that actively participates in many intracellular physiological and biochemical processes as well as pathogen infection. However, the function of Cdc37 in silkworm cells under Bombyx mori nucleopolyhedrovirus (BmNPV) infection is unknown. We cloned and identified BmCdc37, a Cdc37 gene from B. mori, which is highly conserved among other species. After BmNPV infection, the expression level of the BmCdc37 gene was up-regulated and showed an expression pattern similar to the BmHsp90 gene, which relies on Cdc37 to stabilize and activate specific protein kinases. The immunofluorescence, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP) assays all indicated that BmCdc37 interacts with BmHsp90 in silkworm cells. Both BmCdc37 and BmHsp90 promote the reproduction of BmNPV. Co-expression of BmCdc37 and BmHsp90 was better at promoting virus proliferation than overexpression alone. These findings all indicate that BmCdc37 plays an active role in the proliferation of BmNPV.
Assuntos
Bombyx , Animais , Bombyx/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , NucleopoliedrovírusRESUMO
The trachea of insects is a tubular epithelia tissue that transports oxygen and other gases. It serves as a useful model for the studying of the cellular and molecular events involved in epithelial tube formation. Almost all of the extracellular matrix can be degraded by Matrix metalloproteinases (MMPs), which is closely related to the processes of development and regeneration. The regulation of trachea by MMPs is roughly known in previous studies, but the detailed regulation mechanism and involved gene function are not fully explored. In this article, we found MMP1 expressed highly during tracheal remodeling, and knocked out it makes the tracheal branch number reduced in Bombyx mori. In trachea of transgenic BmMMP1-KO silkworm, the space expanding of taenidium and epidermal cells and the structure of apical membrane were abnormal. To explore the underlying mechanism, we detected that DE-cadherin and Integrin ß1 were accumulated in trachea of transgenic BmMMP1-KO silkworm by immunohistochemistry. Moreover, 5-Bromo-2'-Deoxyuridine (BrdU) labeling showed that knockout of BmMMP1 in silkworm inhibited tracheal cell proliferation, and BmMMP1 also regulated the proliferation and migration of BmNS cells. All of the results demonstrated that BmMMP1 regulates the development of the tracheal tissue by expanding the space of tracheal cuticles and increases the number of tracheal branches by degrading DE-cadherin and Integrin ß1.