Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(4): 1384-1403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38181170

RESUMO

PURPOSE: To present a theoretical framework that rigorously defines and analyzes key concepts and quantities for velocity selective arterial spin labeling (VSASL). THEORY AND METHODS: An expression for the VSASL arterial delivery function is derived based on (1) labeling and saturation profiles as a function of velocity and (2) physiologically plausible approximations of changes in acceleration and velocity across the vascular system. The dependence of labeling efficiency on the amplitude and effective bolus width of the arterial delivery function is defined. Factors that affect the effective bolus width are examined, and timing requirements to minimize quantitation errors are derived. RESULTS: The model predicts that a flow-dependent negative bias in the effective bolus width can occur when velocity selective inversion (VSI) is used for the labeling module and velocity selective saturation (VSS) is used for the vascular crushing module. The bias can be minimized by choosing a nominal labeling cutoff velocity that is lower than the nominal cutoff velocity of the vascular crushing module. CONCLUSION: The elements of the model are specified in a general fashion such that future advances can be readily integrated. The model can facilitate further efforts to understand and characterize the performance of VSASL and provide critical theoretical insights that can be used to design future experiments and develop novel VSASL approaches.


Assuntos
Artérias , Angiografia por Ressonância Magnética , Marcadores de Spin , Artérias/diagnóstico por imagem , Modelos Teóricos , Aceleração , Circulação Cerebrovascular/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
2.
Magn Reson Med ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011598

RESUMO

PURPOSE: To mitigate the B0/B1 + sensitivity of velocity-selective inversion (VSI) pulse trains for velocity-selective arterial spin labeling (VSASL) by implementing adiabatic refocusing. This approach aims to achieve artifact-free VSI-based perfusion imaging through single-pair label-control subtractions, reducing the need for the currently required four-pair dynamic phase-cycling (DPC) technique when using a velocity-insensitive control. METHODS: We introduce a Fourier-transform VSI (FT-VSI) train that incorporates sinc-modulated hard excitation pulses with MLEV-8-modulated adiabatic hyperbolic secant refocusing pairs. We compare performance between this train and the standard composite refocusing train, including with and without DPC, for dual-module VSI VSASL. We evaluate (1) simulated velocity-selective profiles and subtraction fidelity across a broad B0/B1 + range, (2) subtraction fidelity in phantoms, and (3) image quality, artifact presence, and gray-matter perfusion heterogeneity (as measured by the spatial coefficient of variation) in healthy human subjects. RESULTS: Adiabatic refocusing significantly improves FT-VSI robustness to B0/B1 + inhomogeneity for a single label-control subtraction. Subtraction fidelity is dramatically improved in both simulation and phantoms compared with composite refocusing without DPC, and is similar compared with DPC methods. In humans, marked artifacts seen with the non-DPC composite refocusing approach are eliminated, corroborated by significantly reduced gray-matter heterogeneity (via lower spatial coefficient of variation values). CONCLUSION: A novel VSASL labeling train using adiabatic refocusing pulses for VSI was found to reduce artifacts related to B0/B1 + inhomogeneity, thereby providing an alternative to DPC and its associated limitations, which include increased vulnerability to physiological noise and motion, reduced functional MRI applicability, and suboptimal data censoring.

3.
J Int Neuropsychol Soc ; 29(9): 859-869, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36789631

RESUMO

OBJECTIVES: Physical activity (PA) may help maintain brain structure and function in aging. Since the intensity of PA needed to effect cognition and cerebrovascular health remains unknown, we examined associations between PA and cognition, regional white matter hyperintensities (WMH), and regional cerebral blood flow (CBF) in older adults. METHOD: Forty-three older adults without cognitive impairment underwent magnetic resonance imaging (MRI) and comprehensive neuropsychological assessment. Waist-worn accelerometers objectively measured PA for approximately one week. RESULTS: Higher time spent in moderate to vigorous PA (MVPA) was uniquely associated with better memory and executive functioning after adjusting for all light PA. Higher MVPA was also uniquely associated with lower frontal WMH volume although the finding was no longer significant after additionally adjusting for age and accelerometer wear time. MVPA was not associated with CBF. Higher time spent in all light PA was uniquely associated with higher CBF but not with cognitive performance or WMH volume. CONCLUSIONS: Engaging in PA may be beneficial for cerebrovascular health, and MVPA in particular may help preserve memory and executive function in otherwise cognitively healthy older adults. There may be differential effects of engaging in lighter PA and MVPA on MRI markers of cerebrovascular health although this needs to be confirmed in future studies with larger samples. Future randomized controlled trials that increase PA are needed to elucidate cause-effect associations between PA and cerebrovascular health.


Assuntos
Disfunção Cognitiva , Exercício Físico , Humanos , Idoso , Exercício Físico/fisiologia , Cognição/fisiologia , Encéfalo/diagnóstico por imagem , Acelerometria/métodos
4.
Neuroimage ; 259: 119409, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752411

RESUMO

In multi-echo fMRI (ME-fMRI), two metrics have been widely used to measure the performance of various acquisition and analysis approaches. These are temporal SNR (tSNR) and differential contrast-to-noise ratio (dCNR). A key step in ME-fMRI is the weighted combination of the data from multiple echoes, and prior work has examined the dependence of tSNR and dCNR on the choice of weights. However, most studies have focused on only one of these two metrics, and the relationship between the two metrics has not been examined. In this work, we present a geometric view that offers greater insight into the relation between the two metrics and their weight dependence. We identify three major regimes: (1) a tSNR robust regime in which tSNR is robust to the weight selection with most weight variants achieving close to optimal performance, whereas dCNR shows a pronounced dependence on the weights with most variants achieving suboptimal performance; (2) a dCNR robust regime in which dCNR is robust to the weight selection with most weight variants achieving close to optimal performance, while tSNR exhibits a strong dependence on the weights with most variants achieving significantly lower than optimal performance; and (3) a within-type robust regime in which both tSNR and dCNR achieve nearly optimal performance when the form of the weights are variants of their respective optimal weights and exhibit a moderate decrease in performance for other weight variants. Insight into the behavior observed in the different regimes is gained by considering spherical representations of the weight dependence of the components used to form each metric. For multi-echo acquisitions, dCNR is shown to be more directly related than tSNR to measures of CNR and signal-to-noise ratio (SNR) for task-based and resting-state fMRI scans, respectively.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Benchmarking , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Humanos , Cintilografia , Razão Sinal-Ruído
5.
Neuroimage ; 202: 116005, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31336189

RESUMO

In resting-state functional MRI, the correlation between blood-oxygenation-level-dependent (BOLD) signals across brain regions is used to estimate the functional connectivity (FC) of the brain. FC estimates are prone to the influence of nuisance factors including scanner-related artifacts and physiological modulations of the BOLD signal. Nuisance regression is widely performed to reduce the effect of nuisance factors on FC estimates on a per-scan basis. However, a dedicated analysis of nuisance effects on the variability of FC metrics across a collection of scans has been lacking. This work investigates the effects of nuisance factors on the variability of FC estimates across a collection of scans both before and after nuisance regression. Inter-scan variations in FC estimates are shown to be significantly correlated with the geometric norms of various nuisance terms, including head motion measurements, signals derived from white-matter and cerebrospinal regions, and the whole-brain global signal (GS) both before and after nuisance regression. In addition, it is shown that GS regression (GSR) can introduce GS norm-related fluctuations that are negatively correlated with inter-scan FC estimates. The empirical results are shown to be largely consistent with the predictions of a theoretical framework previously developed for the characterization of dynamic FC measures. This work shows that caution must be exercised when interpreting inter-scan FC measures across scans both before and after nuisance regression.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/normas , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Adulto , Artefatos , Conectoma/métodos , Movimentos da Cabeça , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto Jovem
6.
Neuroimage ; 184: 1005-1031, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30223062

RESUMO

In resting-state fMRI, dynamic functional connectivity (DFC) measures are used to characterize temporal changes in the brain's intrinsic functional connectivity. A widely used approach for DFC estimation is the computation of the sliding window correlation between blood oxygenation level dependent (BOLD) signals from different brain regions. Although the source of temporal fluctuations in DFC estimates remains largely unknown, there is growing evidence that they may reflect dynamic shifts between functional brain networks. At the same time, recent findings suggest that DFC estimates might be prone to the influence of nuisance factors such as the physiological modulation of the BOLD signal. Therefore, nuisance regression is used in many DFC studies to regress out the effects of nuisance terms prior to the computation of DFC estimates. In this work we examined the relationship between seed-specific sliding window correlation-based DFC estimates and nuisance factors. We found that DFC estimates were significantly correlated with temporal fluctuations in the magnitude (norm) of various nuisance regressors. Strong correlations between the DFC estimates and nuisance regressor norms were found even when the underlying correlations between the nuisance and fMRI time courses were relatively small. We then show that nuisance regression does not necessarily eliminate the relationship between DFC estimates and nuisance norms, with significant correlations observed between the DFC estimates and nuisance norms even after nuisance regression. We present theoretical bounds on the difference between DFC estimates obtained before and after nuisance regression and relate these bounds to limitations in the efficacy of nuisance regression with regards to DFC estimates.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Artefatos , Feminino , Humanos , Masculino , Análise de Regressão , Reprodutibilidade dos Testes
7.
Neuroimage ; 202: 116162, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31493534

RESUMO

OBJECTIVE: The ε4 allele of the apolipoprotein E (APOE) gene increases risk for cognitive decline in normal and pathologic aging. However, precisely how APOE ε4 exerts its negative impact on cognition is poorly understood. The present study aimed to determine whether APOE genotype (ε4+ vs. ε4-) modifies the interaction of medial temporal lobe (MTL) resting cerebral blood flow (CBF) and brain structure (cortical thickness [CT], volume [Vo]) on verbal memory performance. METHODS: Multiple linear regression models were employed to investigate relationships between APOE genotype, arterial spin labeling MRI-measured CBF and FreeSurfer-based CT and Vo in four MTL regions of interest (left and right entorhinal cortex and hippocampus), and verbal memory performance among a sample of 117 cognitively normal older adults (41 ε4+, 76 ε4-) between the ages of 64 and 89 (mean age â€‹= â€‹73). RESULTS: Results indicated that APOE genotype modified the interaction of CBF and CT on memory in the left entorhinal cortex, such that the relationship between entorhinal CBF and memory was negative (lower CBF was associated with better memory) in non-carriers with higher entorhinal CT, positive (higher CBF was associated with better memory) in non-carriers with lower entorhinal CT, and negative (higher CBF was associated with worse memory) in ε4 carriers with lower entorhinal CT. CONCLUSIONS: Findings suggest that older adult APOE ε4 carriers may experience vascular dysregulation and concomitant morphological alterations in the MTL that interact to negatively affect memory even in the absence overt clinical symptoms, providing potential insight into the mechanistic link between APOE ε4 and detriments in cognition. Moreover, findings suggest a distinct multimodal neural signature in ε4 carriers (higher CBF and lower CT in the entorhinal cortex) that could aid in the identification of candidates for future clinical trials aimed at preventing or slowing cognitive decline. Differential findings with respect to ε4 carriers and non-carriers are discussed in the context of neurovascular compensation.


Assuntos
Apolipoproteínas E/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Entorrinal/irrigação sanguínea , Córtex Entorrinal/fisiologia , Memória/fisiologia , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiologia , Circulação Cerebrovascular , Córtex Entorrinal/anatomia & histologia , Feminino , Genótipo , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade
8.
Hum Brain Mapp ; 40(8): 2377-2389, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30681228

RESUMO

There is ample evidence of atypical functional connectivity (FC) in autism spectrum disorders (ASDs). However, transient relationships between neural networks cannot be captured by conventional static FC analyses. Dynamic FC (dFC) approaches have been used to identify repeating, transient connectivity patterns ("states"), revealing spatiotemporal network properties not observable in static FC. Recent studies have found atypical dFC in ASDs, but questions remain about the nature of group differences in transient connectivity, and the degree to which states persist or change over time. This study aimed to: (a) describe and relate static and dynamic FC in typical development and ASDs, (b) describe group differences in transient states and compare them with static FC patterns, and (c) examine temporal stability and flexibility between identified states. Resting-state functional magnetic resonance imaging (fMRI) data were collected from 62 ASD and 57 typically developing (TD) children and adolescents. Whole-brain, data-driven regions of interest were derived from group independent component analysis. Sliding window analysis and k-means clustering were used to explore dFC and identify transient states. Across all regions, static overconnnectivity and increased variability over time in ASDs predominated. Furthermore, significant patterns of group differences emerged in two transient states that were not observed in the static FC matrix, with group differences in one state primarily involving sensory and motor networks, and in the other involving higher-order cognition networks. Default mode network segregation was significantly reduced in ASDs in both states. Results highlight that dynamic approaches may reveal more nuanced transient patterns of atypical FC in ASDs.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem
9.
Neuroimage ; 174: 317-327, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548849

RESUMO

Changes in vigilance or alertness during a typical resting state fMRI scan are inevitable and have been found to affect measures of functional brain connectivity. Since it is not often feasible to monitor vigilance with EEG during fMRI scans, it would be of great value to have methods for estimating vigilance levels from fMRI data alone. A recent study, conducted in macaque monkeys, proposed a template-based approach for fMRI-based estimation of vigilance fluctuations. Here, we use simultaneously acquired EEG/fMRI data to investigate whether the same template-based approach can be employed to estimate vigilance fluctuations of awake humans across different resting-state conditions. We first demonstrate that the spatial pattern of correlations between EEG-defined vigilance and fMRI in our data is consistent with the previous literature. Notably, however, we observed a significant difference between the eyes-closed (EC) and eyes-open (EO) conditions, finding stronger negative correlations with vigilance in regions forming the default mode network and higher positive correlations in thalamus and insula in the EC condition when compared to the EO condition. Taking these correlation maps as "templates" for vigilance estimation, we found that the template-based approach produced fMRI-based vigilance estimates that were significantly correlated with EEG-based vigilance measures, indicating its generalizability from macaques to humans. We also demonstrate that the performance of this method was related to the overall amount of variability in a subject's vigilance state, and that the template-based approach outperformed the use of the global signal as a vigilance estimator. In addition, we show that the template-based approach can be used to estimate the variability across scans in the amplitude of the vigilance fluctuations. We discuss the benefits and tradeoffs of using the template-based approach in future fMRI studies.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Vigília , Adulto , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
10.
IEEE Trans Signal Process ; 66(12): 3124-3139, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34188433

RESUMO

In this paper, we develop a Bayesian evidence maximization framework to solve the sparse non-negative least squares problem (S-NNLS). We introduce a family of probability densities referred to as the Rectified Gaussian Scale Mixture (R-GSM), to model the sparsity enforcing prior distribution for the signal of interest. The R-GSM prior encompasses a variety of heavy-tailed distributions such as the rectified Laplacian and rectified Student-t distributions with a proper choice of the mixing density. We utilize the hierarchical representation induced by the R-GSM prior and develop an evidence maximization framework based on the Expectation-Maximization (EM) algorithm. Using the EM-based method, we estimate the hyper-parameters and obtain a point estimate for the solution of interest. We refer to this proposed method as rectified Sparse Bayesian Learning (R-SBL). We provide four EM-based R-SBL variants that offer a range of options to trade-off computational complexity to the quality of the E-step computation. These methods include the Markov Chain Monte Carlo EM, linear minimum mean square estimation, approximate message passing and a diagonal approximation. Using numerical experiments, we show that the proposed R-SBL method outperforms existing S-NNLS solvers in terms of both signal and support recovery, and is very robust against the structure of the design matrix.

11.
Neuroimage ; 154: 4-14, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28647022

RESUMO

The ability to discriminate signal from noise plays a key role in the analysis and interpretation of functional magnetic resonance imaging (fMRI) measures of brain activity. Over the past two decades, a number of major sources of noise have been identified, including system-related instabilities, subject motion, and physiological fluctuations. This article reviews the characteristics of the various noise sources as well as the mechanisms through which they affect the fMRI signal. Approaches for distinguishing signal from noise and the associated challenges are also reviewed. These challenges reflect the fact that some noise sources, such as respiratory activity, are generated by the same underlying brain networks that give rise to functional signals that are of interest.

12.
Neuroimage ; 150: 213-229, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28213118

RESUMO

The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos
13.
Neuroimage ; 152: 602-618, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28089677

RESUMO

In resting-state functional MRI (rsfMRI), the correlation between blood oxygenation level dependent (BOLD) signals across different brain regions is used to estimate the functional connectivity of the brain. This approach has led to the identification of a number of resting-state networks, including the default mode network (DMN) and the task positive network (TPN). Global signal regression (GSR) is a widely used pre-processing step in rsfMRI that has been shown to improve the spatial specificity of the estimated resting-state networks. In GSR, a whole brain average time series, known as the global signal (GS), is regressed out of each voxel time series prior to the computation of the correlations. However, the use of GSR is controversial because it can introduce artifactual negative correlations. For example, it has been argued that anticorrelations observed between the DMN and TPN are primarily an artifact of GSR. Despite the concerns about GSR, there is currently no consensus regarding its use. In this paper, we introduce a new framework for understanding the effects of GSR. In particular, we show that the main effects of GSR can be well approximated as a temporal downweighting process in which the data from time points with relatively large GS magnitudes are greatly attenuated while data from time points with relatively small GS magnitudes are largely unaffected. Furthermore, we show that a limiting case of this downweighting process in which data from time points with large GS magnitudes are censored can also approximate the effects of GSR. In other words, the correlation maps obtained after GSR show a high degree of spatial similarity (including the presence of anticorrelations between the DMN and TPN) with maps obtained using only the uncensored (i.e. retained) time points. Since the data from these retained time points are unaffected by the censoring process, this finding suggests that the observed anticorrelations inherently exist in the data from time points with small GS magnitudes and are not simply an artifact of GSR.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Processamento de Sinais Assistido por Computador
14.
Neuroimage ; 143: 141-151, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27612646

RESUMO

The ability to discriminate signal from noise plays a key role in the analysis and interpretation of functional magnetic resonance imaging (fMRI) measures of brain activity. Over the past two decades, a number of major sources of noise have been identified, including system-related instabilities, subject motion, and physiological fluctuations. This article reviews the characteristics of the various noise sources as well as the mechanisms through which they affect the fMRI signal. Approaches for distinguishing signal from noise and the associated challenges are also reviewed. These challenges reflect the fact that some noise sources, such as respiratory activity, are generated by the same underlying brain networks that give rise to functional signals that are of interest.


Assuntos
Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Humanos
15.
Neuroimage ; 124(Pt A): 24-31, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26327245

RESUMO

In resting-state functional connectivity magnetic resonance imaging (fcMRI) studies, measures of functional connectivity are often calculated after the removal of a global mean signal component. While the application of the global signal regression approach has been shown to reduce the influence of physiological artifacts and enhance the detection of functional networks, there is considerable controversy regarding its use as the method can lead to significant bias in the resultant connectivity measures. In addition, evidence from recent studies suggests that the global signal is linked to neural activity and may carry clinically relevant information. For instance, in a prior study we found that the amplitude of the global signal was negatively correlated with EEG measures of vigilance across subjects and experimental runs. Furthermore, caffeine-related decreases in global signal amplitude were associated with increases in EEG vigilance. In this study, we extend the prior work by examining measures of global signal amplitude and EEG vigilance under eyes-closed (EC) and eyes-open (EO) resting-state conditions. We show that changes (EO minus EC) in the global signal amplitude are negatively correlated with the associated changes in EEG vigilance. The slope of this EO-EC relation is comparable with the slope of the previously reported relation between caffeine-related changes in the global signal amplitude and EEG vigilance. Our findings provide further support for a basic relationship between global signal amplitude and EEG vigilance.


Assuntos
Nível de Alerta , Córtex Cerebral/fisiologia , Fenômenos Fisiológicos Oculares , Adulto , Mapeamento Encefálico , Cafeína/administração & dosagem , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
16.
Neuroimage ; 124(Pt B): 1202-1207, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26032887

RESUMO

Arterial spin labeling (ASL) MRI provides an accurate and reliable measure of cerebral blood flow (CBF). A rapidly growing number of CBF measures are being collected both in clinical and research settings around the world, resulting in a large volume of data across a wide spectrum of study populations and health conditions. Here, we describe a central CBF data repository with integrated processing workflows, referred to as the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN). The CBFBIRN provides an integrated framework for the analysis and comparison of CBF measures across studies and sites. In this work, we introduce the main capabilities of the CBFBIRN (data storage, processing, and sharing), describe what types of data are available, explain how users can contribute to the data repository and access existing data from it, and discuss our long-term plans for the CBFBIRN.


Assuntos
Circulação Cerebrovascular , Bases de Dados Factuais , Disseminação de Informação , Informática Médica , Humanos , Angiografia por Ressonância Magnética , Neuroimagem , Marcadores de Spin
17.
Neuroimage ; 124(Pt B): 1074-1079, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26364863

RESUMO

The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data.


Assuntos
Bases de Dados Factuais , Informática Médica , Adolescente , Adulto , Idoso , Pesquisa Biomédica , Feminino , Voluntários Saudáveis , Humanos , Disseminação de Informação , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Transtornos Psicóticos/patologia , Valores de Referência , Pesquisa , Esquizofrenia/patologia , Adulto Jovem
18.
Neuroimage ; 112: 43-51, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25743045

RESUMO

The recent introduction of simultaneous multi-slice (SMS) acquisitions has enabled the acquisition of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) data with significantly higher temporal sampling rates. In a parallel development, the use of multi-echo fMRI acquisitions in conjunction with a multi-echo independent component analysis (ME-ICA) approach has been introduced as a means to automatically distinguish functionally-related BOLD signal components from signal artifacts, with significant gains in sensitivity, statistical power, and specificity. In this work, we examine the gains that can be achieved with a combined approach in which data obtained with a multi-echo simultaneous multi-slice (MESMS) acquisition are analyzed with ME-ICA. We find that ME-ICA identifies significantly more BOLD-like components in the MESMS data as compared to data acquired with a conventional multi-echo single-slice acquisition. We demonstrate that the improved performance of MESMS derives from both an increase in the number of temporal samples and the enhanced ability to filter out high-frequency artifacts.


Assuntos
Imagem Ecoplanar/métodos , Imagem Ecoplanar/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Oxigênio/sangue , Adulto , Artefatos , Feminino , Humanos , Masculino , Análise de Componente Principal
19.
J Int Neuropsychol Soc ; 21(2): 105-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25771682

RESUMO

Impairment on inhibitory tasks has been well documented in bipolar disorder (BD). Differences in cerebral blood flow (CBF) between BD patients and healthy comparison (HC) participants have also been reported. Few studies have examined the relationship between cognitive performance and regional CBF in this patient population. We hypothesized that group differences on an inhibitory task (the Delis-Kaplan Executive Function Scale's Color-Word Inhibition task) would be associated with differential CBF in bilateral anterior cingulate cortex (ACC), inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) regions. Whole brain resting CBF was measured using Multiphase Pseudocontinuous Arterial Spin Labeling MR imaging for 28 euthymic BD and 36 HC participants. Total gray matter (GM) CBF was measured, and regional CBF values were extracted for each region of interest (ROI) using Freesurfer-based individual parcellations. Group, CBF, and group-by-CBF interaction were examined as predictors of inhibition performance. Groups did not differ in age, gender or education. BD patients performed significantly worse on Color-Word inhibition. There were no significant group differences in CBF in either total GM or in any ROI. There was a group by CBF interaction in the bilateral ACC, right IPL and right DLPFC such that better inhibitory performance was generally associated with higher resting state CBF in BD subjects, but not HC participants. Although CBF was not abnormal in this euthymic BD sample, results confirm previous reports of inter-episode inhibitory deficits and indicate that the perfusion-cognition relationship is different in BD compared to HC individuals.


Assuntos
Transtorno Bipolar/complicações , Transtorno Bipolar/patologia , Circulação Cerebrovascular/fisiologia , Inibição Psicológica , Deficiências da Aprendizagem/etiologia , Adulto , Idoso , Feminino , Substância Cinzenta/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Marcadores de Spin
20.
Neuroimage ; 84: 585-604, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24055704

RESUMO

The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Feminino , Humanos , Masculino , Descanso/fisiologia , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA