RESUMO
According to estimations, approximately about 15% of couples worldwide suffer from infertility, in which individuals with azoospermia or oocyte abnormalities cannot be treated with assisted reproductive technology. The skin-derived stem cells (SDSCs) differentiation into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells intervention for infertility treatment in recent years. However, the cellular origin of SDSCs and their dynamic changes in transcription profile during differentiation into PGCLCs in vitro remain largely undissected. Here, the results of single-cell RNA sequencing indicated that porcine SDSCs are mainly derived from multipotent dermal fibroblast progenitors (MDFPs), which are regulated by growth factors (EGF/bFGF). Importantly, porcine SDSCs exhibit pluripotency for differentiating into three germ layers and can effectively differentiate into PGCLCs through complex transcriptional regulation involving histone modification. Moreover, this study also highlights that porcine SDSC-derived PGCLCs specification exhibit conservation with the human primordial germ cells lineage and that its proliferation is mediated by the MAPK signaling pathway. Our findings provide substantial novel insights into the field of regenerative medicine in which stem cells differentiate into germ cells in vitro, as well as potential therapeutic effects in individuals with azoospermia and/or defective oocytes.
Assuntos
Azoospermia , Transcriptoma , Masculino , Humanos , Animais , Suínos , Azoospermia/metabolismo , Células Cultivadas , Células Germinativas/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas , FibroblastosRESUMO
Controlled mRNA storage and stability is essential for oocyte meiosis and early embryonic development. However, how to regulate mRNA storage and stability in mammalian oogenesis remains elusive. Here we showed that LSM14B, a component of membraneless compartments including P-body-like granules and mitochondria-associated ribonucleoprotein domain (MARDO) in germ cell, is indispensable for female fertility. To reveal loss of LSM14B disrupted primordial follicle assembly and caused mRNA reduction in non-growing oocytes, which was concomitant with the impaired assembly of P-body-like granules. 10× Genomics single-cell RNA-sequencing and immunostaining were performed. Meanwhile, we conducted RNA-seq analysis of GV-stage oocytes and found that Lsm14b deficiency not only impaired the maternal mRNA accumulation but also disrupted the translation in fully grown oocytes, which was closely associated with dissolution of MARDO components. Moreover, Lsm14b-deficient oocytes reassembled a pronucleus containing decondensed chromatin after extrusion of the first polar body, through compromising the activation of maturation promoting factor, while the defects were restored via WEE1/2 inhibitor. Together, our findings reveal that Lsm14b plays a pivotal role in mammalian oogenesis by specifically controlling of oocyte mRNA storage and stability.
Assuntos
Oócitos , Oogênese , Animais , Feminino , RNA Mensageiro/genética , Oogênese/genética , Folículo Ovariano , Meiose/genética , Fertilidade/genética , MamíferosRESUMO
Spermatogenesis is a highly coordinated and complex process, and is pivotal for transmitting genetic information between mammalian generations. In this study, we investigated the conservation, differences, and biological functions of homologous genes during spermatogenesis in Mongolia sheep, humans, cynomolgus monkey, and mice using single-cell RNA sequencing technology. We compared X chromosome meiotic inactivation events in Mongolia sheep, humans, cynomolgus monkey, and mice to uncover the concerted activity of X chromosome genes. Subsequently, we focused on the dynamics of gene expression, key biological functions, and signaling pathways at various stages of spermatogenesis in Mongolia sheep and humans. Additionally, the ligand-receptor networks of Mongolia sheep and humans in testicular somatic and germ cells at different developmental stages were mapped to reveal conserved germ cell-soma communication using single-cell resolution. These datasets provided novel information and insights to unravel the molecular regulatory mechanisms of Mongolia sheep spermatogenesis and highlight conservation in gene expression during spermatogenesis between Mongolia sheep and humans, providing a foundation for the establishment of a large mammalian disease model of male infertility.
Assuntos
Testículo , Transcriptoma , Animais , Macaca fascicularis/genética , Masculino , Mamíferos/genética , Camundongos , Mongólia , Análise de Sequência de RNA , Ovinos/genética , Espermatogênese/genética , Testículo/metabolismoRESUMO
Primordial follicle assembly in the mouse occurs during perinatal ages and largely determines the ovarian reserve that will be available to support the reproductive life span. The development of primordial follicles is controlled by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time series on murine ovaries, coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to postnatal day (PD) 3 were reported. Along with confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified 5 distinct cell clusters associated with germ cells and 6 with granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. By building single-cell pseudotemporal trajectories, 3 states and 1 branch point of fate transition for the germ cells were revealed, as well as for the granulosa cells. Moreover, Gene Ontology (GO) term enrichment enabled identification of the biological process most represented in germ cells and granulosa cells or common to both cell types at each specific stage, and the interactions of germ cells and granulosa cells basing on known and novel pathway were presented. Finally, by using single-cell regulatory network inference and clustering (SCENIC) algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell-specific transcription programs throughout the period of investigation. Above all, this study provides the whole transcriptome landscape of ovarian cells and unearths new insights during primordial follicle assembly in mice.
Assuntos
Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas , Células da Granulosa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Folículo Ovariano/fisiologia , Ovário/citologia , Gravidez , Análise de Célula Única/métodos , Transcriptoma/genéticaRESUMO
In vitro differentiation of stem cells into functional gametes remains of great interest in the biomedical field. Skin-derived stem cells (SDSCs) are an adult stem cells that provides a wide range of clinical applications without inherent ethical restrictions. In this paper, porcine SDSCs were successfully differentiated into primordial germ cell-like cells (PGCLCs) in conditioned media. The PGCLCs were characterized in terms of cell morphology, marker gene expression, and epigenetic properties. Furthermore, we also found that 25 µM melatonin (MLT) significantly increased the proliferation of the SDSC-derived PGCLCs while acting through the MLT receptor type 1 (MT1). RNA-seq results found the mitogen-activated protein kinase (MAPK) signaling pathway was more active when PGCLCs were cultured with MLT. Moreover, the effect of MLT was attenuated by the use of S26131 (MT1 antagonist), crenolanib (platelet-derived growth factor receptor inhibitor), U0126 (mitogen-activated protein kinase kinase inhibitor), or CCG-1423 (serum response factor transcription inhibitor), suggesting that MLT promotes the proliferation processes through the MAPK pathway. Taken together, this study highlights the role of MLT in promoting PGCLCs proliferation. Importantly, this study provides a suitable in vitro model for use in translational studies and could help to answer numerous remaining questions related to germ cell physiology.
Assuntos
Melatonina , Suínos , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/farmacologia , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Germinativas/metabolismo , Células-Tronco , Diferenciação Celular , Proliferação de Células , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/farmacologiaRESUMO
Meiosis is one of the most finely orchestrated events during gametogenesis with distinct developmental patterns in males and females. However, the molecular mechanisms involved in this process remain not well known. Here, we report detailed transcriptome analyses of cell populations present in the mouse female gonadal ridges (E11.5) and the embryonic ovaries from E12.5 to E14.5 using single-cell RNA sequencing (scRNA seq). These periods correspond with the initiation and progression of meiosis throughout the first stage of prophase I. We identified 13 transcriptionally distinct cell populations and 7 transcriptionally distinct germ cell subclusters that correspond to mitotic (3 clusters) and meiotic (4 clusters) germ cells. By analysing cluster-specific gene expression profiles, we found four cell clusters correspond to different cell stages en route to meiosis and characterized their detailed transcriptome dynamics. Our scRNA seq analysis here represents a new important resource for deciphering the molecular pathways driving female meiosis initiation.
Assuntos
Perfilação da Expressão Gênica/métodos , Meiose , Ovário/citologia , Análise de Célula Única/métodos , Transcriptoma , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Ovário/embriologiaRESUMO
A novel actinomycete, designated strain TRM 66233T, was isolated from Apocynum venetum L. collected from the Xinjiang Uygur Autonomous Region of China and characterized using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 66233T with the genus Streptomyces. Strain TRM 66233T showed a high similarity value to Streptomyces bikiniensis NRRL B-1049T (98.07â%) based on the 16S rRNA gene phylogenetic tree. The whole-cell sugar pattern of TRM 66233T consisted of glucose, galactose, mannose and ribose. The predominant menaquinones were MK-9(H2), MK-9(H6), MK-9(H8) and MK-9(H10). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and four unidentified lipids. The major fatty acids were iso-C15â:â0, anteiso-C15â:â0, iso-C16â:â0, C16â:â0 and iso-C17â:â0. The G+C content of the DNA was 70.35 mol%. The DNA-DNA relatedness and average nucleotide identity values as well as evolutionary distances based on multilocus (atpD, gyrB, recA, rpoB and trpB) sequences between strain TRM 66233T and closely related type strains were significantly lower than the recommended threshold values. The whole-genome average nucleotide identity and digital DNA-DNA hybridization values between strain TRM 66233T and S. bikiniensis NRRL B-1049T were 78.86 and 23.2â%, respectively. On the basis of evidence from this polyphasic study, strain TRM 66233T should represent a novel species of the genus Streptomyces, for which the name Streptomyces apocyni sp. nov. is proposed. The type strain is TRM 66233T (=CCTCC AA 2019056T=LMG 31559T).
Assuntos
Apocynum/microbiologia , Filogenia , Streptomyces/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
As one of the most prevalent contaminants in animal and human food, the deleterious effects of trichothecene mycotoxin deoxynivalenol (DON) warrant extensive investigation. Here, to assess the effects of DON exposure to the populations of gut microbiota, four-weeks-old mice were exposed to different doses (1.0 and 5.0â¯mg/kg) of DON every two days for 14â¯days. The contents of the cecum were then collected for DNA extraction and metagenomic shotgun sequencing, in order to detect alterations of the gut microbiota. We found that the average body weight and daily gain in the high dose DON treated group decreased. Metagenomic analysis demonstrated that the relative abundance of Firmicutes in the low and Bacteroidetes in the high dose groups increased compared to that in the untreated control group. Moreover, using gene calling and functional annotation, we found that large numbers of biosynthesis and degradation dependent populations were altered. As a result, metabolism pathways including sphingolipid, protein digestion/absorption, and lipoic acid pathways in the high dose DON exposed group dramatically fluctuated in comparison to the control and low dose groups. In addition, metagenomic binning identified ten microbiota genome drafts, with high levels of completeness, that further explain the DON-induced intestinal toxicity. Our findings suggested that DON exposure significantly impacted the microbiota community in the mouse, causing biosynthesis and degradation damage and metabolism pathway disorders.
Assuntos
Bactérias/efeitos dos fármacos , Ceco/efeitos dos fármacos , DNA Bacteriano/genética , Microbiologia de Alimentos , Microbioma Gastrointestinal/efeitos dos fármacos , Genoma Bacteriano , Metagenômica/métodos , Tricotecenos/toxicidade , Animais , Bactérias/genética , Bactérias/metabolismo , Ceco/microbiologia , Disbiose , Fezes/microbiologia , CamundongosRESUMO
The mediation of maternal-embryonic cross-talk via nutrition and metabolism impacts greatly on offspring health. However, the underlying key interfaces remain elusive. Here, we determined that maternal high-fat diet during pregnancy in mice impaired preservation of the ovarian primordial follicle pool in female offspring, which was concomitant with mitochondrial dysfunction of germ cells. Furthermore, this occurred through a reduction in maternal gut microbiota-related vitamin B1 while the defects were restored via vitamin B1 supplementation. Intriguingly, vitamin B1 promoted acetyl-CoA metabolism in offspring ovaries, contributing to histone acetylation and chromatin accessibility at the promoters of cell cycle-related genes, enhancement of mitochondrial function, and improvement of granulosa cell proliferation. In humans, vitamin B1 is downregulated in the serum of women with gestational diabetes mellitus. In this work, these findings uncover the role of the non-gamete transmission of maternal high-fat diet in influencing offspring oogenic fate. Vitamin B1 could be a promising therapeutic approach for protecting offspring health.
Assuntos
Folículo Ovariano , Ovário , Gravidez , Animais , Feminino , Camundongos , Humanos , Oogênese , Dieta Hiperlipídica/efeitos adversosRESUMO
Numerous flavonoid Diels-Alder-type natural products have been isolated and received great attention from the synthetic community. Herein, we reported a catalytic strategy for an asymmetric Diels-Alder reaction of 2'-hydroxychalcone with a range of diene substrates using a chiral ligand-boron Lewis acid complex. This method enables the convenient synthesis of a wide range of cyclohexene skeletons in excellent yields with moderate to good enantioselectivities, which is critical to prepare natural product congeners for further biological studies.
RESUMO
The female reproductive lifespan is largely determined by the size of primordial follicle pool, which is established in early life. Bisphenol S (BPS), frequently present in plastic products used in daily life, has been demonstrated as an exogenous estrogen-like endocrine disrupting chemical interfering with the endocrine and reproductive systems. However, the molecular mechanisms of its reproductive toxicity remain to be determined. In the present study, we focused on the effect of BPS on the early ovarian folliculogenesis of mice. Our in vivo experiments showed that the treatment with BPS at 2 and 10 µg/kg body weight/day for 3 days induced abnormal germ cell cyst breakdown and primordial follicle assembly in the mouse ovary, further affecting later ovarian differentiation and reducing oocyte quality. In addition, our in vitro study demonstrated that BPS could interact with estrogen receptors (ERs) to induce phosphorylation of JNKs, which is responsible for reducing oocyte adhesion in cysts. Meanwhile, BPS exposure up-regulated Notch signaling pathway to increase the proliferation of granulosa cells precursors. Our study provided new evidence for the adverse effects of BPS on female reproduction, especially after perinatal exposure, and elucidated how it works.
Assuntos
Cistos , Folículo Ovariano , Animais , Feminino , Camundongos , Oócitos , Fenóis/toxicidade , Gravidez , SulfonasRESUMO
Previous studies have shown that nicotine could impair the germ cell cyst breakdown and the primordial follicle assembly by autophagy. In this paper, we discovered that luteinizing hormone (LH) and follicle-stimulating hormone (FSH) could counteract the damage caused by nicotine of mouse germ cell cyst breakdown. The neonatal mice were separately intraperitoneally injected with nicotine, nicotine plus LH, nicotine plus FSH, and saline (control) for 4 days. Compared with the nicotine group, the quality of oocytes and the number of follicles were remarkably increased in the nicotine plus LH group or nicotine plus FSH group. LH and FSH could alleviate nicotine-induced oocyte autophagy by different pathways. LH reduced the nicotine-induced autophagy by restoring the phosphorylation level of adenosine 5'-monophosphate-activated protein kinase α-1, while FSH by downregulating the phosphorylation level of Forkhead box class O 1. In addition, in a subsequent study of 6-week mice in different treated groups, we found that LH and FSH supplementation significantly improved normal maturation rates, fertilization rates, and embryo's developmental potential of oocytes in oocytes exposed to nicotine. Taken together, these results suggested that LH and FSH could counteract the damage caused by nicotine and finally ensure normal germ cell cyst breakdown and early embryo development.
RESUMO
Although there is abundant evidence to demonstrate that maternal smoking during pregnancy will harm the health of future generations, the impact of nicotine use by pregnant woman upon the oogenesis and folliculogenesis of female offspring has not been as widely scrutinized. Here we focus on the effects of nicotine on the meiotic progression of fetal oocytes. The data indicated that in pregnant mice treated with nicotine, intracellular ROS increased in follicles within the fetal ovary. Excessive intracellular hydrogen peroxide (H2O2) and superoxide anion (O2-) decreased mitochondrial membrane potential, inducing mitochondrial dysfunction, triggering an autophagic cascade and inhibiting anti-autophagic proteins. Fetal oocytes in F1 offspring of pregnant mice treated with nicotine exhibited a delay in meiotic prophase I, especially from the stage of pachytene to diplotene. In pubertal F1 offspring we observed a reduced number of follicles; the same reduction was also observed in F2 offspring. Of note, we found that melatonin ameliorated nicotine-induced oocyte damage and increased the expression of MnSOD, which decreased the production of nicotine-induced intracellular ROS. In addition, melatonin also maintained normal H3K4 and H3K9 di- and tri-methylation in F1 and F2 ovaries. Taken together, the current evidence suggests that, in the mouse, melatonin could prevent nicotine-impaired fetal oogenesis and folliculogenesis in offspring.
Assuntos
Melatonina , Animais , Feminino , Humanos , Peróxido de Hidrogênio , Meiose , Camundongos , Nicotina , Oócitos , GravidezRESUMO
A lysosome-targeted fluorescent chemodosimeter, 1, was developed for monitoring endogenous and exogenous H2S by in vivo imaging of HeLa cells, D. melanogaster and C. elegans. In the tests of mutated C. elegans (SRP-6 nulls), chemodosimeter 1 could trace the accumulation of lysosome and lysosomal injury with a high resolution.