Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830307

RESUMO

Melatonin, a widely known indoleamine molecule that mediates various animal and plant physiological processes, is formed from N-acetyl serotonin via N-acetylserotonin methyltransferase (ASMT). ASMT is an enzyme that catalyzes melatonin synthesis in plants in the rate-determining step and is homologous to hydroxyindole-O-methyltransferase (HIOMT) melatonin synthase in animals. To date, little is known about the effect of HIOMT on salinity in apple plants. Here, we explored the melatonin physiological function in the salinity condition response by heterologous expressing the homologous human HIOMT gene in apple plants. We discovered that the expression of melatonin-related gene (MdASMT) in apple plants was induced by salinity. Most notably, compared with the wild type, three transgenic lines indicated higher melatonin levels, and the heterologous expression of HIOMT enhanced the expression of melatonin synthesis genes. The transgenic lines showed reduced salt damage symptoms, lower relative electrolyte leakage, and less total chlorophyll loss from leaves under salt stress. Meanwhile, through enhanced activity of antioxidant enzymes, transgenic lines decreased the reactive oxygen species accumulation, downregulated the expression of the abscisic acid synthesis gene (MdNCED3), accordingly reducing the accumulation of abscisic acid under salt stress. Both mechanisms regulated morphological changes in the stomata synergistically, thereby mitigating damage to the plants' photosynthetic ability. In addition, transgenic plants also effectively stabilized their ion balance, raised the expression of salt stress-related genes, as well as alleviated osmotic stress through changes in amino acid metabolism. In summary, heterologous expression of HIOMT improved the adaptation of apple leaves to salt stress, primarily by increasing melatonin concentration, maintaining a high photosynthetic capacity, reducing reactive oxygen species accumulation, and maintaining normal ion homeostasis.


Assuntos
Acetilserotonina O-Metiltransferasa/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malus/genética , Melatonina/genética , Ácido Abscísico/metabolismo , Aminoácidos/metabolismo , Clorofila/metabolismo , Homeostase/genética , Íons/metabolismo , Malus/crescimento & desenvolvimento , Malus/metabolismo , Melatonina/metabolismo , Pressão Osmótica , Fotossíntese/genética , Desenvolvimento Vegetal/genética , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Tolerância ao Sal/genética , Transdução de Sinais/genética
2.
Nat Commun ; 12(1): 5350, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504089

RESUMO

Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.


Assuntos
Biodiversidade , Clima Desértico , Fungos/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Solo/química , China , Ecossistema , Fungos/classificação , Fungos/crescimento & desenvolvimento , Geografia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Plantas/classificação , Microbiologia do Solo , Especificidade da Espécie , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA