Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 242(3): 1363-1376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450804

RESUMO

Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.


Assuntos
Asteraceae , Tragopogon , Tragopogon/genética , Asteraceae/genética , Metilação de DNA/genética , Poliploidia , Genoma de Planta
2.
Mikrochim Acta ; 191(2): 104, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236334

RESUMO

A lateral flow assay (LFA) strip based on dual 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB)-encoded satellite Fe3O4@Au (Mag@Au) SERS tags with nanogap is reported for  ultrasensitive and simultaneous diagnosis of two SARS-CoV-2 functional proteins. Composed of Fe3O4 core, satellite gold shell with nanogaps, and double-layer DTNB, the Mag@Au nanoparticles with an average size of 238 nm were designed as multifunctional tags to efficiently enrich the target SARS-CoV-2 protein from complex samples, significantly enhancing the SERS signal of the LFA strip and provide quantitative SERS detection of analyte on test lines. The developed dual DTNB-encoded satellite Mag@Au-based LFA allowed simultaneous quantification of spike (S) protein and nucleocapsid (NP) protein with detection limits of 23 pg mL-1 and 2 pg mL-1, respectively, lower than commercial ELISA kits and reported SERS-LFA detection system-based Au NPs and Fe3O4@3 nm Au MNPs. This magnetic SERS-LFA also showed high performance of multi-variant strain detection and further distinguished clinical samples of Omicron variant infection, demonstrating the potential of in situ detection of respiratory virus diseases.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , COVID-19/diagnóstico , Ácido Ditionitrobenzoico , Ouro , SARS-CoV-2
3.
Nat Mater ; 21(11): 1225-1239, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36284239

RESUMO

Despite technical efforts and upgrades, advances in complementary metal-oxide-semiconductor circuits have become unsustainable in the face of inherent silicon limits. New materials are being sought to compensate for silicon deficiencies, and two-dimensional materials are considered promising candidates due to their atomically thin structures and exotic physical properties. However, a potentially applicable method for incorporating two-dimensional materials into silicon platforms remains to be illustrated. Here we try to bridge two-dimensional materials and silicon technology, from integrated devices to monolithic 'on-silicon' (silicon as the substrate) and 'with-silicon' (silicon as a functional component) circuits, and discuss the corresponding requirements for material synthesis, device design and circuitry integration. Finally, we summarize the role played by two-dimensional materials in the silicon-dominated semiconductor industry and suggest the way forward, as well as the technologies that are expected to become mainstream in the near future.


Assuntos
Semicondutores , Silício , Silício/química , Óxidos/química
4.
Opt Lett ; 48(19): 5145-5148, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773406

RESUMO

In this Letter, we present a portable all-fiber fluorescent detection system based on metal-lined hollow-core fiber (MLHCF) for the ultra-sensitive real-time monitoring of mercury ions (Hg2+). The system employs a rhodamine derivative as the probe. The hollow core of the MLHCF serves as both the flow channel of the liquid sample and the waveguide of the optical path. The metal coating in the intermediate layer between the capillary and the polyimide (PI) coating in the MLHCF provides good light confinement, enhancing the interaction between the sample and the incident light for better fluorescence excitation and collection efficiency. Additionally, further enhancement is achieved by placing an inserted filter along the light path to reflect the excitation light back to the MLHCF. A 3-cm length of MLHCF enables simultaneous excitation of a 40-µL sample volume and collection of most of its fluorescent signal in all directions, thereby significantly contributing to its exceptional sensitivity with a limit of detection (LOD) of 2.3 ng/L. The all-fiber fluorescence-enhanced detection device also shows rapid response time, excellent reusability, and selectivity. This system presents an online, reproducible, and portable solution for the trace detection of Hg2+ and provides a promising way for detecting other heavy metal ions.

5.
Molecules ; 29(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202758

RESUMO

For Si/C anodes, achieving excellent performance with a simple fabrication process is still an ongoing challenge. Herein, we report a green, facile and scalable approach for the in situ synthesis of Si@C anodes during the electrode manufacturing process by partially carbonizing Si nanoparticles (Si NPs) and dual polymers at a relatively low temperature. Due to the proper mass ratio of the two polymer precursors and proper carbonization temperature, the resultant Si-based anode demonstrates a typical Si@C core-shell structure and has strong mechanical properties with the aid of dual-interfacial bonding between the Si NPs core and carbon shell layer, as well as between the C matrix and the underlying Cu foil. Consequently, the resultant Si@C anode shows a high specific capacity (3458.1 mAh g-1 at 0.2 A g-1), good rate capability (1039 mAh g-1 at 4 A g-1) and excellent cyclability (77.94% of capacity retention at a high current density of 1 A g-1 after 200 cycles). More importantly, the synthesis of the Si@C anode is integrated in situ into the electrode manufacturing process and, thus, significantly decreases the cost of the lithium-ion battery but without sacrificing the electrochemical performance of the Si@C anode. Our results provide a new strategy for designing next-generation, high-capacity and cost-effective batteries.

6.
Annu Rev Genet ; 48: 485-517, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25421600

RESUMO

Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas/genética , Hibridização Genética , Poliploidia , Processamento Alternativo/genética , Arabidopsis/genética , Dosagem de Genes , Genoma de Planta
7.
Bull Entomol Res ; 112(6): 745-757, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35414375

RESUMO

The apple buprestid, Agrilus mali Matsumura, that was widespread in north-eastern China, was accidently introduced to the wild apple forest ecosystem in mountainous areas of Xinjiang, China. This invasive beetle feeds on domesticated apples and many species of Malus and presents a serious threat to ancestral apple germplasm sources and apple production worldwide. Estimating the potential area at risk of colonization by A. mali is crucial for instigating appropriate preventative management strategies, especially under global warming. We developed a CLIMEX model of A. mali to project this pest's potential distribution under current and future climatic scenarios in 2100 using CSIRO-Mk 3.0 GCM running the SRES A1B emissions scenario. Under current climate, A. mali could potentially invade neighbouring central Asia and eventually the mid-latitude temperate zone, and some subtropical areas and Pampas Steppe in the Southern Hemisphere. This potential distribution encompasses wild apples species, the ancestral germplasm for domesticated apples. With global warming, the potential distribution shifts to higher latitudes, with the potential range expanding slightly, though the overall suitability could decline in both hemispheres. In 2100, the length of the growing season of this pest in the mid-latitude temperature zone could increase by 1-2 weeks, with higher growth rates in most sites compared with current climate in mid-latitudes, at least in China. Our work highlights the need for strategies to prevent the spread of this pest, managing the threats to wild apples in Tian Shan Mountain forests in Central Asia, and commercial apple production globally. We discuss practical management tactics to reduce the spread of this pest and mitigate its impacts.


Assuntos
Besouros , Ecossistema , Animais , Mali , Aquecimento Global , Temperatura
8.
Sens Actuators B Chem ; 345: 130372, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34219970

RESUMO

Rapid and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (FluA) antigens in the early stages of virus infection is the key to control the epidemic spread. Here, we developed a two-channel fluorescent immunochromatographic assay (ICA) for ultrasensitive and simultaneous qualification of the two viruses in biological samples. A high-performance quantum dot nanobead (QB) was fabricated by adsorption of multilayers of dense quantum dots (QDs) onto the SiO2 surface and used as the highly luminescent label of the ICA system to ensure the high-sensitivity and stability of the assay. The combination of monodispersed SiO2 core (∼180 nm) and numerous carboxylated QDs formed a hierarchical shell, which ensured that the QBs possessed excellent stability, superior fluorescence signal, and convenient surface functionalization. The developed ICA biosensor achieved simultaneous detection of SARS-CoV-2 and FluA in one test within 15 min, with detection limits reaching 5 pg/mL for SARS-CoV-2 antigen and 50 pfu/mL for FluA H1N1. Moreover, our method showed high accuracy and specificity in throat swab samples with two orders of magnitude improvement in sensitivity compared with traditional AuNP-based ICA method. Hence, the proposed method is a promising and convenient tool for detection of respiratory viruses.

9.
Mikrochim Acta ; 187(10): 570, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32939582

RESUMO

An on-site detection strategy is reported based on dual-color SiO2@quantum dot (QD)-integrated lateral flow immunoassay (LFA) strip to realize the quantitative and simultaneous detection of C-reactive protein (CRP) and procalcitonin (PCT) in serum. The dual-color SiO2@QD nanotags with monodispersity and excellent luminescence were synthesized using polyethyleneimine-mediated electrostatic adsorption of dense red CdSe/ZnS-COOH (excitation/emission 365/625 nm) or green CdSe/ZnS-COOH (excitation/emission 365/525 nm) QDs on the surface of 180 nm SiO2 spheres and were conjugated with anti-PCT and anti-CRP monoclonal antibodies, as stable and fluorescent-enhanced QD nanotags in the LFA system. The use of SiO2@QDs with two different fluorescent signals caused the sensitivity and specificity of the multiplex LFA system. As a result, the proposed assay provided a wide logarithmic determination range with a CRP quantitative range of 0.5-103 ng/mL and PCT quantitative range of 0.05-103 ng/mL. The limits of detection (LODs) of CRP and PCT reached 0.5 and 0.05 ng/mL, respectively. The SiO2@QD-based LFA showed great potential as rapid detection tool for the simultaneous monitoring of CRP and PCT in serum sample.


Assuntos
Biomarcadores/química , Proteína C-Reativa/metabolismo , Imunoensaio/métodos , Inflamação/imunologia
10.
Cardiology ; 136(1): 10-14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27544385

RESUMO

OBJECTIVES: Dilated cardiomyopathy (DCM) is a leading cause of sudden cardiac death. So far, only 127 mutations of Titin(TTN) have been reported in patients with different phenotypes such as isolated cardiomyopathies, purely skeletal muscle phenotypes or complex overlapping disorders of muscles. METHODS: We applied whole-exome sequencing (WES) to investigate cardiomyopathy patients and a cardiomyopathy-related gene-filtering strategy was used to analyze the disease-causing mutations. Sanger sequencing was applied to confirm the mutation cosegregation in the affected families. RESULTS: A nonsense mutation (c.12325C>T/p.R4109X) and a missense mutation (c.17755G>C/p.G5919R) of TTN were identified in 2 Chinese DCM families, respectively. Both mutations were cosegregated in all affected members of both families. The nonsense mutation is predicted to result in a truncated TTN protein and the missense mutation leads to a substitution of glycine by arginine. Both variants may cause the structure changes of titin protein. CONCLUSIONS: We employed WES to detect the mutations of DCM patients and identified 2 novel mutations. Our study expands the spectrum of TTN mutations and offers accurate genetic testing information for DCM patients who are still clinically negative.


Assuntos
Cardiomiopatia Dilatada/genética , Códon sem Sentido , Conectina/genética , Mutação de Sentido Incorreto , Adulto , Povo Asiático/genética , Cardiomiopatia Dilatada/diagnóstico por imagem , China , Análise Mutacional de DNA , Ecocardiografia , Feminino , Humanos , Masculino , Linhagem , Sequenciamento do Exoma , Adulto Jovem
11.
Polymers (Basel) ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932097

RESUMO

Hemicellulose is one of the most important natural polysaccharides in nature. Hemicellulose from different sources varies in chemical composition and structure, which in turn affects the modification effects and industrial applications. Grain and oil by-products (GOBPs) are important raw materials for hemicellulose. This article reviews the modification methods of hemicellulose in GOBPs. The effects of chemical and physical modification methods on the properties of GOBP hemicellulose biomaterials are evaluated. The potential applications of modified GOBP hemicellulose are discussed, including its use in film production, hydrogel formation, three-dimensional (3D) printing materials, and adsorbents for environmental remediation. The limitations and future recommendations are also proposed to provide theoretical foundations and technical support for the efficient utilization of these by-products.

12.
Int J Clin Health Psychol ; 24(1): 100437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292829

RESUMO

Background: Schizophrenia often occurs in youth, and psychosis risk syndrome (PRS) occurs before the onset of psychosis. Assessing the neuropsychological abnormalities of PRS individuals can help in early identification and active intervention of mental illness. Auditory P300 amplitude defect is an important manifestation of attention processing abnormality in PRS, but it is still unclear whether there are abnormalities in the attention processing of rhythmic compound tone stimuli in PRS individuals, and whether the P300 amplitude induced by these stimuli is specific to PRS individuals and related to their clinical outcomes. Methods: In total, 226 participants, including 122 patients with PRS, 51 patients with emotional disorders (ED), and 53 healthy controls (HC) were assessed. Baseline electroencephalography was recorded during the compound tone oddball task. The event-related potentials (ERPs) induced by rhythmic compound tone stimuli of two frequencies (20-Hz, 40-Hz) were measured. Almost all patients with PRS were followed up for 12 months and reclassified into four groups: PRS-conversion, PRS-symptomatic, PRS-emotional disorder, and PRS-complete remission. The differences in baseline ERPs were compared among the clinical outcome groups. Results: Regardless of the stimulation frequency, the average P300 amplitude were significantly higher in patients with PRS than in those with ED (p = 0.003, d = 0.48) and in HC (p = 0.002, d = 0.44) group. The average P300 amplitude of PRS-conversion group was significantly higher than that of the PRS-complete remission (p = 0.016, d = 0.72) and HC group (p = 0.001, d = 0.76), and the average P300 amplitude of PRS-symptomatic group was significantly higher than that of the HC group (p = 0.006, d = 0.48). Regardless of the groups (PRS, ED, HC) or the PRS clinical outcome groups, the average P300 amplitude induced by 20-Hz tone stimulation was significantly higher than that induced by 40-Hz stimulation (ps < 0.001, È 2 = 0.074-0.082). The average reaction times of PRS was significantly faster than that of ED (p = 0.01, d = 0.38), and the average reaction times of the participants to 20-Hz target stimulation was significantly faster than that to 40-Hz target stimulation (p < 0.001, d = 0.21). Conclusion: The auditory P300 amplitude induced by rhythmic compound tone stimuli is a specific electrophysiological manifestation of PRS, and the auditory P300 amplitude induced by compound tone stimuli shows promise as a putative prognostic biomarker for PRS clinical outcomes, including conversion to psychosis and clinical complete remission.

13.
Biosens Bioelectron ; 261: 116505, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885536

RESUMO

Surface enhanced Raman spectroscopy (SERS) utilizes the fingerprint features of molecular vibrations to identify and detect substances. However, in traditional single focus excitation scenarios, its signal collection efficiency of the objective is restricted. Furthermore, the uneven distribution of samples on the SERS substrate would result in poor signal stability, while the excitation power is limited to avoid sample damage. SERS detection system always requires precise adjustment of focal length and spot size, making it difficult for point-of-care testing applications. Here, we proposed a SERS microfluidic chip with barium titanate microspheres array (BTMA) embedded using vacuum self-assembled hot-pressing method for SERS detection with simultaneous enhancement of sensitivity and stability. Due to photonic nano-jets and directional antenna effects, high index microspheres are perfect micro-lens for effective light focusing and signal collecting. The BTMA can not only disperse excitation beam into an array of focal points covering the target uniformly with very low signal fluctuation, but enlarge the power threshold for higher signal intensity. We conducted a proof-of-principle experiment on chip for the detection of bacteria with immuno-magnetic tags and immuno-SERS tags. Together with magnetic and ultrasonic operations, the target bacteria in the flow were evenly congregated on the focal plane of BTMA. It demonstrated a limit of detection of 5 cells/mL, excellent signal reproducibility (error∼4.84%), and excellent position tolerance of 500 µm in X-Y plane (error∼5.375%). It can be seen that BTMA-SERS microfluidic chip can effectively solve the contradiction between sensitivity and stability in SERS detection.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Microesferas , Análise Espectral Raman , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Técnicas Biossensoriais/instrumentação , Limite de Detecção , Desenho de Equipamento , Titânio/química , Lentes , Escherichia coli/isolamento & purificação
14.
Nat Commun ; 15(1): 1327, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351088

RESUMO

Inflammation, caused by accumulation of inflammatory cytokines from immunocytes, is prevalent in a variety of diseases. Electro-stimulation emerges as a promising candidate for inflammatory inhibition. Although electroacupuncture is free from surgical injury, it faces the challenges of imprecise pathways/current spikes, and insufficiently defined mechanisms, while non-optimal pathway or spike would require high current amplitude, which makes electro-stimulation usually accompanied by damage and complications. Here, we propose a neuromorphic electro-stimulation based on atomically thin semiconductor floating-gate memory interdigital circuit. Direct stimulation is achieved by wrapping sympathetic chain with flexible electrodes and floating-gate memory are programmable to fire bionic spikes, thus minimizing nerve damage. A substantial decrease (73.5%) in inflammatory cytokine IL-6 occurred, which also enabled better efficacy than commercial stimulator at record-low currents with damage-free to sympathetic neurons. Additionally, using transgenic mice, the anti-inflammation effect is determined by ß2 adrenergic signaling from myeloid cell lineage (monocytes/macrophages and granulocytes).


Assuntos
Citocinas , Inflamação , Camundongos , Animais , Inflamação/metabolismo , Citocinas/metabolismo , Adrenérgicos , Camundongos Transgênicos , Neurônios/metabolismo
15.
Anal Chim Acta ; 1295: 342306, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38355230

RESUMO

Point-of-care quantitative analysis of tracing microRNA disease-biomarkers remains a great challenge in the clinical diagnosis. In this paper, we developed a portable fluorescent lateral flow assay for ultrasensitive quantified detection of acute myocardial infarction related microRNAs in bio-samples. SiO2@DQD (bilayer quantum dots assembly with SiO2 core) based fluorescent lateral flow strip was fabricated as the analysis tool. In order to quantify the tracing microRNA in biosamples, a catalytic hairpin assembly and CRISPR/Cas12a cascade amplification method was performed and combined with the fabricated SiO2@DQD lateral flow strip. Thus, our platform gathered double advantages of portability and ultrasensitive quantification. Based on our strips, target myocardial biomarker microRNA-133a can be detected with a detection limit of 0.32 fM, which was almost 1000-fold sensitive compared with previous reported microRNAs-lateral flow strips. Significantly, this portable fluorescent strip can directly detect microRNAs in serum without any pretreatment and PCR amplification steps. When spiked in serum samples, a recovery of 99.65 %-102.38 % can be obtained. Therefore, our method offers a potential tool for ultrasensitive quantification of diseases related microRNA in the point-of-care diseases diagnosis field.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Infarto do Miocárdio , Humanos , MicroRNAs/análise , Sistemas Automatizados de Assistência Junto ao Leito , Dióxido de Silício , Corantes , Infarto do Miocárdio/diagnóstico , Técnicas Biossensoriais/métodos
16.
Nat Commun ; 15(1): 1613, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383735

RESUMO

In-sensor processing has the potential to reduce the energy consumption and hardware complexity of motion detection and recognition. However, the state-of-the-art all-in-one array integration technologies with simultaneous broadband spectrum image capture (sensory), image memory (storage) and image processing (computation) functions are still insufficient. Here, macroscale (2 × 2 mm2) integration of a rippled-assisted optoelectronic array (18 × 18 pixels) for all-day motion detection and recognition. The rippled-assisted optoelectronic array exhibits remarkable uniformity in the memory window, optically stimulated non-volatile positive and negative photoconductance. Importantly, the array achieves an extensive optical storage dynamic range exceeding 106, and exceptionally high room-temperature mobility up to 406.7 cm2 V-1 s-1, four times higher than the International Roadmap for Device and Systems 2028 target. Additionally, the spectral range of each rippled-assisted optoelectronic processor covers visible to near-infrared (405 nm-940 nm), achieving function of motion detection and recognition.

17.
Phys Rev Lett ; 111(23): 233002, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476266

RESUMO

We demonstrate coherent control of population transfer between vibrational states in an optical lattice by using interference between a one-phonon transition at 2ω and a two-phonon transition at ω. The ω and 2ω transitions are driven by phase- and amplitude-modulation of the lattice laser beams, respectively. By varying the relative phase of these two pathways, we control the branching ratio between transitions to the first excited state and those to the higher states. Our best result shows a branching ratio of 17±2, which is the highest among coherent control experiments using analogous schemes. Such quantum control techniques may find broad application in suppressing leakage errors in a variety of quantum information architectures.

18.
Adv Sci (Weinh) ; 10(22): e2301851, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37229772

RESUMO

Neuromorphic computing can efficiently handle data-intensive tasks and address the redundant interaction required by von Neumann architectures. Synaptic devices are essential components for neuromorphic computation. 2D phosphorene, such as violet phosphorene, show great potential in optoelectronics due to their strong light-matter interactions, while current research is mainly focused on synthesis and characterization, its application in photoelectric devices is vacant. Here, the authors combined violet phosphorene and molybdenum disulfide to demonstrate an optoelectronic synapse with a light-to-dark ratio of 106 , benefiting from a significant threshold shift due to charge transfer and trapping in the heterostructure. Remarkable synaptic properties are demonstrated, including a dynamic range (DR) of > 60 dB, 128 (7-bit) distinguishable conductance states, electro-optical dependent plasticity, short-term paired-pulse facilitation, and long-term potentiation/depression. Thanks to the excellent DR and multi-states, high-precision image classification with accuracies of 95.23% and 79.65% is achieved for the MNIST and complex Fashion-MNIST datasets, which is close to the ideal device (95.47%, 79.95%). This work opens the way for the use of emerging phosphorene in optoelectronics and provides a new strategy for building synaptic devices for high-precision neuromorphic computing.

19.
Anal Chim Acta ; 1251: 340976, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925278

RESUMO

Accurate and ultrasensitive evaluation of human epidermal growth factor receptor 2 (HER2) protein is key to early diagnosis and subtype differentiation of breast cancer. Single-cell analyses to reduce ineffective targeted therapies due to breast cancer heterogeneity and improve patient survival remain challenging. Herein, we reported a novel droplet microfluidic combined with an instant cation exchange signal amplification strategy for quantitative analysis of HER2 protein expression on single cells. In the 160 µm droplets produced by a tapered capillary bundle, abundant Immuno-CdS labeled on HER2-positive cells were replaced by Ag + to obtain Cd2+ that stimulated Rhod-5N fluorescence. This uniformly distributed and instantaneous fluorescence amplification strategy in droplets improves sensitivity and reduces signal fluctuation. Using HER2 modified PS microsphere to simulate single cells, we obtained a linear fitting of HER2-modified concentration and fluorescence intensity in microdroplets with the limit detection of 11.372 pg mL-1. Moreover, the relative standard deviation (RSD) was 4.2-fold lower than the traditional immunofluorescence technique (2.89% vs 12.21%). The HER2 protein on SK-BR-3 cells encapsulated in droplets was subsequently quantified, ranging from 9862.954 pg mL-1 and 205.26 pg mL-1, equivalent to 9.795 × 106 and 2.038 × 105 protein molecules. This detection system provides a universal platform for single-cell sensitive quantitative analysis and contributes to the evaluation of HER2-positive tumors.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Humanos , Feminino , Receptor ErbB-2/metabolismo , Imunofluorescência , Neoplasias da Mama/diagnóstico
20.
Adv Mater ; 34(48): e2106886, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34741478

RESUMO

Continued reduction in transistor size can improve the performance of silicon integrated circuits (ICs). However, as Moore's law approaches physical limits, high-performance growth in silicon ICs becomes unsustainable, due to challenges of scaling, energy efficiency, and memory limitations. The ultrathin layers, diverse band structures, unique electronic properties, and silicon-compatible processes of 2D materials create the potential to consistently drive advanced performance in ICs. Here, the potential of fusing 2D materials with silicon ICs to minimize the challenges in silicon ICs, and to create technologies beyond the von Neumann architecture, is presented, and the killer applications for 2D materials in logic and memory devices to ease scaling, energy efficiency bottlenecks, and memory dilemmas encountered in silicon ICs are discussed. The fusion of 2D materials allows the creation of all-in-one perception, memory, and computation technologies beyond the von Neumann architecture to enhance system efficiency and remove computing power bottlenecks. Progress on the 2D ICs demonstration is summarized, as well as the technical hurdles it faces in terms of wafer-scale heterostructure growth, transfer, and compatible integration with silicon ICs. Finally, the promising pathways and obstacles to the technological advances in ICs due to the integration of 2D materials with silicon are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA