Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(3): e1010107, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298462

RESUMO

Nonrandom selection in one-sample Mendelian Randomization (MR) results in biased estimates and inflated type I error rates only when the selection effects are sufficiently large. In two-sample MR, the different selection mechanisms in two samples may more seriously affect the causal effect estimation. Firstly, we propose sufficient conditions for causal effect invariance under different selection mechanisms using two-sample MR methods. In the simulation study, we consider 49 possible selection mechanisms in two-sample MR, which depend on genetic variants (G), exposures (X), outcomes (Y) and their combination. We further compare eight pleiotropy-robust methods under different selection mechanisms. Results of simulation reveal that nonrandom selection in sample II has a larger influence on biases and type I error rates than those in sample I. Furthermore, selections depending on X+Y, G+Y, or G+X+Y in sample II lead to larger biases than other selection mechanisms. Notably, when selection depends on Y, bias of causal estimation for non-zero causal effect is larger than that for null causal effect. Especially, the mode based estimate has the largest standard errors among the eight methods. In the absence of pleiotropy, selections depending on Y or G in sample II show nearly unbiased causal effect estimations when the casual effect is null. In the scenarios of balanced pleiotropy, all eight MR methods, especially MR-Egger, demonstrate large biases because the nonrandom selections result in the violation of the Instrument Strength Independent of Direct Effect (InSIDE) assumption. When directional pleiotropy exists, nonrandom selections have a severe impact on the eight MR methods. Application demonstrates that the nonrandom selection in sample II (coronary heart disease patients) can magnify the causal effect estimation of obesity on HbA1c levels. In conclusion, nonrandom selection in two-sample MR exacerbates the bias of causal effect estimation for pleiotropy-robust MR methods.


Assuntos
Variação Genética , Análise da Randomização Mendeliana , Viés , Causalidade , Pleiotropia Genética , Humanos , Análise da Randomização Mendeliana/métodos
2.
Mol Biol Rep ; 51(1): 141, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236467

RESUMO

Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.


Assuntos
Neoplasias , Proteínas rho de Ligação ao GTP , Humanos , Proteínas rho de Ligação ao GTP/genética , Neoplasias/genética
3.
Environ Res ; : 119663, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043354

RESUMO

As an emerging contaminant, microplastics (MPs) have received considerable attention for their potential threat to the soil environment. However, the response of soil bacterial and fungal communities to MPs exposure remains unclear. In this study, we conducted a global meta-analysis of 95 publications and 2,317 observations to assess the effects of nonbiodegradable MP properties and exposure conditions on soil microbial biomass, alpha and beta diversity, and community structure. Our results indicate that MPs increased (p < 0.05) soil active microbial biomass by 42%, with the effect varying with MPs type, exposure concentration, exposure time and soil pH. MPs concentration was identified as the most important factor controlling the response of soil microbial biomass to MPs. MPs addition decreased (p < 0.05) the soil bacterial Shannon and Chao1 indices by 2% and 3%, respectively, but had limited effects (p > 0.05) on soil fungal Shannon and Chao1 indices. The type of MPs and exposure time determined the effects of MPs on bacterial Shannon and Chao1 indices, while the type of MPs and soil pH controlled the response ratios of fungal Shannon and Chao1 indices to MPs. Specifically, soil organic carbon (SOC) was the major factor regulating the response ratio of bacterial alpha diversity index to MPs. The presence of MPs did not affect soil bacterial community structure and beta diversity. Our results highlight that MPs reduced bacterial diversity and richness but increased the soil active microbial biomass, suggesting that MPs could disrupt biogeochemical cycles by promoting the growth of specific microorganisms.

4.
Planta Med ; 90(2): 154-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37931776

RESUMO

Astragaloside IV (AS-IV) has been shown to provide renal protection in various kidney injury models. However, the metabolic profile variation of AS-IV in pathological models in vivo is not well established. This study aims to explore the metabolic pathway of AS-IV in vivo in the classical puromycin aminonucleoside (PAN)-induced kidney injury in a rat model. Twelve Wistar rats were randomly divided into the AS-IV (CA) and the PAN+AS-IV (PA) treatment groups. PAN was injected by a single tail intravenous (i. v.) injection at 5 mg/100 g body weight, and AS-IV was administered intragastrically (i. g.) at 40 mg/kg for 10 days. Fecal samples of these rats were collected, and metabolites of AS-IV were detected by ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) to explore the AS-IV metabolic pathway. The metabolic differences between the AS-IV and PAN+AS-IV groups were compared. A total of 25 metabolites were detected, and deglycosylation, deoxygenation, and methyl oxidation were found to be the main metabolic pathways of AS-IV in vivo. The abundance of most of these metabolites in the PAN+AS-IV group was lower than that in the AS-IV treatment group, and differences for seven of them were statistically significant. Our study indicates that AS-IV metabolism is affected in the PAN-induced kidney injury rat model.


Assuntos
Saponinas , Espectrometria de Massas em Tandem , Triterpenos , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ratos Wistar , Puromicina
5.
Environ Toxicol ; 39(1): 421-434, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792549

RESUMO

Papillary thyroid cancer (PTC) is a prevalent malignancy worldwide. Spleen tyrosine kinase (SYK) is a crucial enzyme that participates in various biological processes, including cancer progression. This study aims to uncover the biological function of SYK in PTC. SYK expression patterns in PTC were evaluated using quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), and western blot. Cell function assays were performed to assess the effects of SYK on PTC. Bioinformatics analysis was conducted to identify intriguing microRNA (miRNA) and circular RNA (circRNA). Dual-Luciferase Reporter or RNA immunoprecipitation assays were used to investigate the correlation among SYK, miR-377-3p, and hsa_circ_0006417. SYK was upregulated in PTC. Overexpression of SYK exhibited a positive correlation with tumor size, lymph node metastasis, and unfavorable disease-free survival. Functional assays revealed that SYK exerted tumorigenic effect on PTC cells through mTOR/4E-BP1 pathway. Mechanistically, hsa_circ_0006417 and miR-377-3p regulated SYK expression, offering modulating its tumor-promoting effects. Collectively, SYK acts as an oncogene in PTC through mTOR/4E-BP1 pathway, which is regulated by the hsa_circ_0006417/miR-377-3p axis, thereby providing a potential alternative for PTC treatment.


Assuntos
MicroRNAs , RNA Circular , Quinase Syk , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Quinase Syk/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Serina-Treonina Quinases TOR , RNA Circular/genética
6.
Arch Biochem Biophys ; 736: 109542, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758911

RESUMO

Autophagy, a cellular lysosomal degradation and survival pathway, supports nutrient recycling and adaptation to metabolic stress and participates in various stages of tumor development, including tumorigenesis, metastasis, and malignant state maintenance. Among the various factors contributing to the dysregulation of autophagy in cancer, RNA modification can regulate autophagy by directly affecting the expression of core autophagy proteins. We propose that autophagy disorder mediated by RNA modification is an important mechanism for cancer development. Therefore, this review mainly discusses the role of RNA modification-mediated autophagy regulation in tumorigenesis. We summarize the molecular basis of autophagy and the core proteins and complexes at different stages of autophagy, especially those involved in cancer development. Moreover, we describe the crosstalk of RNA modification and autophagy and review the recent advances and potential role of the RNA modification/autophagy axis in the development of multiple cancers. Furthermore, the dual role of the RNA modification/autophagy axis in cancer drug resistance is discussed. A comprehensive understanding and extensive exploration of the molecular crosstalk of RNA modifications with autophagy will provide important insights into tumor pathophysiology and provide more options for cancer therapeutic strategies.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Carcinogênese/patologia , Transformação Celular Neoplásica , Autofagia/fisiologia , RNA/genética
7.
Mol Biol Rep ; 50(8): 6557-6568, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37338733

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a serious health threat worldwide. Defective mitophagy has been reported to induce mitochondrial dysfunction, which is closely associated with CKD pathogenesis. Honokiol (HKL) is a bioactive component of Magnolia officinalis that has multiple efficacies. Our study aimed to investigate the effect of HKL on a CKD rat model and explore the possible mechanisms of mitophagy mediated by Bcl-2 interacting protein 3 and BNIP3-like (NIX) (also known as the BNIP3/NIX pathway) and FUN14 domain-containing 1 (the FUNDC1 pathway) and the role of the AMP-activated protein kinase (AMPK) pathway. METHODS: A CKD rat model was established by feeding the animals dietary adenine (0.75% w/w, 3 weeks). Simultaneously, the treatment group was given HKL (5 mg/kg/day, 4 weeks) by gavage. Renal function was assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN) levels. Pathological changes were analyzed by periodic acid-Schiff (PAS) and Masson's trichrome staining. Protein expression was evaluated by Western blotting and immunohistochemistry. RESULTS: HKL treatment ameliorated the decline in renal function and reduced tubular lesions and interstitial fibrosis in CKD rats. Accordingly, the renal fibrosis markers Col-IV and α-SMA were decreased by HKL. Moreover, HKL suppressed the upregulation of the proapoptotic proteins Bad and Bax and Cleaved caspase-3 expression in CKD rats. Furthermore, HKL suppressed BNIP3, NIX and FUNDC1 expression, leading to the reduction of excessive mitophagy in CKD rats. Additionally, AMPK was activated by adenine, and HKL reversed this change and significantly decreased the level of activated AMPK (phosphorylated AMPK, P-AMPK). CONCLUSION: HKL exerted a renoprotective effect on CKD rats, which was possibly associated with BNIP3/NIX and FUNDC1-mediated mitophagy and the AMPK pathway.


Assuntos
Mitofagia , Insuficiência Renal Crônica , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/metabolismo
8.
Environ Res ; 237(Pt 1): 116890, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604223

RESUMO

The significant impact of low ambient temperature, which was less regulated, on vehicle exhaust emissions had garnered considerable attention. This study investigated the impact of ambient temperature on exhaust emissions based on the global meta-analysis. The estimated sizes (mean difference, MDt) of 11 exhaust pollutants were quantified with 1795 observations at low ambient temperatures (LATs, -18 °C to -7 °C) versus warm ambient temperatures (WATs, 20 °C-30 °C). The results indicated a strong and positive effect of LATs on vehicular emissions, with the average ratio of vehicular emission factors at LATs to those at WATs (EFLAT/EFWAT) ranging from 1.14 to 3.84. Oil-based subgroup analysis indicated a quite large MDt [NOx] of diesel engines (12.42-15.10 mg km-1·k-1). Particulate emissions were 0.22-1.41 mg km-1·k-1 enhanced during cold-start tests at LATs. The application of particulate filters on motor vehicles greatly reduced the impact of ambient temperature on tailpipe particulate emissions, at the expense of induced NOx emissions. During the Federal Test Procedure (FTP-75), exhaust emissions showed higher temperature dependence compared to the averaged levels (1.31-39.31 times). Locally weighted regression was used to determine exhaust temperature profiles, revealing that gasoline vehicles emitted more particulates at LATs, while diesel vehicles showed the opposite trend. Given the widespread use of motor vehicles worldwide, future motor vehicle emission standards should include tighter limits on exhaust emissions at LATs.

9.
Environ Res ; 216(Pt 3): 114701, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332670

RESUMO

To reduce the heavy dependence on petroleum, bioethanol has been increasingly employed as an alternative and sustainable transportation fuel. However, the characteristics of black carbon (BC) emissions from E10 petrol vehicles (i.e., ethanol-gasoline containing 10% ethanol) are still unclear, especially under real driving conditions. Here, a tunnel test was conducted during a cold winter. This tunnel was characterized by heavy traffic comprising more than 98% E10-fueled gasoline vehicles (GVs). Real-time BC concentrations, traffic parameters and meteorological conditions were recorded during the sampling campaign. The average BC concentration inside the tunnel (10.94 ± 5.02 µg m-3) was almost twice the background concentration. Based on aethalometer AE33 in situ measurements and the minimum R-squared (MRS) method, real-time aerosol light absorption was apportioned. The light absorption proportions of BC, primary brown carbon (BrC1) and secondary brown carbon (BrC2) were 79.86%, 2.78% and 17.36%, respectively, at 370 nm. The BC emission factor (EFBC) of the E10-fueled vehicles was 1.09 ± 0.49 mg km-1·veh-1 and 15.24 ± 6.85 mg·(kg fuel)-1, lower than those of traditional gasoline fueled vehicles in previous studies. This study can support the compilation of vehicular BC emission inventories, provide recommendations for biofuel policies and contribute to comprehensively understanding the climatic impact of E10 petrol.


Assuntos
Poluentes Atmosféricos , Gasolina , Gasolina/análise , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Aerossóis/análise , Fuligem/análise , Carbono/análise , Etanol/análise , Monitoramento Ambiental/métodos
10.
BMC Psychiatry ; 23(1): 799, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37915018

RESUMO

BACKGROUND: The timings of reproductive life events have been examined to be associated with various psychiatric disorders. However, studies have not considered the causal pathways from reproductive behaviors to different psychiatric disorders. This study aimed to investigate the nature of the relationships between five reproductive behaviors and twelve psychiatric disorders. METHODS: Firstly, we calculated genetic correlations between reproductive factors and psychiatric disorders. Then two-sample Mendelian randomization (MR) was conducted to estimate the causal associations among five reproductive behaviors, and these reproductive behaviors on twelve psychiatric disorders, using genome-wide association study (GWAS) summary data from genetic consortia. Multivariable MR was then applied to evaluate the direct effect of reproductive behaviors on these psychiatric disorders whilst accounting for other reproductive factors at different life periods. RESULTS: Univariable MR analyses provide evidence that age at menarche, age at first sexual intercourse and age at first birth have effects on one (depression), seven (anxiety disorder, ADHD, bipolar disorder, bipolar disorder II, depression, PTSD and schizophrenia) and three psychiatric disorders (ADHD, depression and PTSD) (based on p<7.14×10-4), respectively. However, after performing multivariable MR, only age at first sexual intercourse has direct effects on five psychiatric disorders (Depression, Attention deficit or hyperactivity disorder, Bipolar disorder, Posttraumatic stress disorder and schizophrenia) when accounting for other reproductive behaviors with significant effects in univariable analyses. CONCLUSION: Our findings suggest that reproductive behaviors predominantly exert their detrimental effects on psychiatric disorders and age at first sexual intercourse has direct effects on psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Bipolar , Esquizofrenia , Humanos , Feminino , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Transtorno Bipolar/genética , Transtorno Bipolar/complicações , Esquizofrenia/complicações , Transtorno do Deficit de Atenção com Hiperatividade/complicações
11.
Ecotoxicol Environ Saf ; 258: 114998, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37167739

RESUMO

Triclosan (TCS) is omnipresent in the environment and has drawn increasing attention due to its potential adverse effects on human health. Direct photolysis of TCS readily occurs, especially in the surface layers of waters that receive abundant ultraviolet radiation during the daytime. However, biological concerns and the identification of toxic products during TCS photolysis have been explored limitedly. Therefore, in the present work, the structural characterization of the photolysis products by UVC and UVA were performed based on the mass spectra and fragmental ions. The results displayed that TCS was more readily eliminated by UVC than UVA, and the product species were completely different when TCS was degraded by UVC and UVA, respectively. Two products, m/z 235 and m/z 252, were produced via reductive dechlorination and nucleophilic substitution with UVC, while three dioxin-like isomer products were generated by dechlorination, cyclization and hydroxylation. Furthermore, the results of biological concerns suggested that the elimination of TCS did not represent the disappearance of biological risks. Specifically, more hazardous and photolysis products were formed during TCS photolysis with ultraviolets. For instance, the dioxin-like isomer products were highly microtoxic and genotoxic, and mildly antiestrogenic. The positive findings highlighted the biological concerns of TCS photolysis by ultraviolet radiation in the aquatic environment.


Assuntos
Dioxinas , Triclosan , Poluentes Químicos da Água , Humanos , Triclosan/metabolismo , Raios Ultravioleta , Fotólise , Espectrometria de Massas , Poluentes Químicos da Água/análise
12.
J Digit Imaging ; 36(4): 1480-1488, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156977

RESUMO

This study aims to develop and validate a deep learning (DL) model to differentiate glioblastoma from single brain metastasis (BM) using conventional MRI combined with diffusion-weighted imaging (DWI). Preoperative conventional MRI and DWI of 202 patients with solitary brain tumor (104 glioblastoma and 98 BM) were retrospectively obtained between February 2016 and September 2022. The data were divided into training and validation sets in a 7:3 ratio. An additional 32 patients (19 glioblastoma and 13 BM) from a different hospital were considered testing set. Single-MRI-sequence DL models were developed using the 3D residual network-18 architecture in tumoral (T model) and tumoral + peritumoral regions (T&P model). Furthermore, the combination model based on conventional MRI and DWI was developed. The area under the receiver operating characteristic curve (AUC) was used to assess the classification performance. The attention area of the model was visualized as a heatmap by gradient-weighted class activation mapping technique. For the single-MRI-sequence DL model, the T2WI sequence achieved the highest AUC in the validation set with either T models (0.889) or T&P models (0.934). In the combination models of the T&P model, the model of DWI combined with T2WI and contrast-enhanced T1WI showed increased AUC of 0.949 and 0.930 compared with that of single-MRI sequences in the validation set, respectively. And the highest AUC (0.956) was achieved by combined contrast-enhanced T1WI, T2WI, and DWI. In the heatmap, the central region of the tumoral was hotter and received more attention than other areas and was more important for differentiating glioblastoma from BM. A conventional MRI-based DL model could differentiate glioblastoma from solitary BM, and the combination models improved classification performance.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia
13.
Cancer Metastasis Rev ; 40(1): 245-272, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33423164

RESUMO

Pancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome. In this review, we will mainly focus on the genetic mutations and epigenetic signature of PC. Multiple tumor suppressor and oncogene mutations are involved in PC initiation, including K-RAS, p53, CDKN2A, and SMAD4. The mutational frequency of these genes ranges from 50 to 98% in PC. The nature of mutation diagnosis is mostly homozygous deletion, point mutation, and aberrant methylation. In addition to genetic modification, epigenetic alterations particularly aberrant hypermethylation and hypomethylation also predispose patients to PC. Hypermethylation is mostly involved in the downregulation of tumor suppressor genes and leads to PC, while multiple genes also represent a hypomethylation status in PC. Several renewable drugs and detection tools have been developed to cope with this aggressive malady, but all are futile, and surgical resection remains the only choice for prolonged survival if diagnosed before metastasis. However, the available therapeutic development is insufficient to cure PC. Therefore, novel approaches are a prerequisite to elucidating the genetic and epigenetic mechanisms underlying PC progression for healthier lifelong survival.


Assuntos
Epigênese Genética , Mutação , Neoplasias Pancreáticas , Homozigoto , Humanos , Neoplasias Pancreáticas/genética , Deleção de Sequência
14.
J Transl Med ; 20(1): 157, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382859

RESUMO

BACKGROUND: JAK1 and JAK2 have been implicated in fibrosis and cancer as a fibroblast-related marker; however, their role in liver fibrosis has not been elucidated. Here, we aim to determine the effect and underlying mechanism of JAK1/2 inhibition on liver fibrosis and hepatic stellate cells (HSCs) and further explore the therapeutic efficacy of Ruxolitinib, a JAK1/2 selective inhibitor, on preventing and reversing liver fibrosis in mice. METHODS: Immunohistochemistry staining of JAK1 and JAK2 were performed on liver tissue in mice with hepatic fibrosis and human liver tissue microarray of liver cirrhosis and liver cancer. LX-2 cells treated with specific siRNA of JAK1 and JAK2 were used to analysis activation, proliferation and migration of HSCs regulated by JAK1/2. The effects of Ruxolitinib (JAK1/2 inhibitor) on liver fibrosis were studied in LX-2 cells and two progressive and reversible fibrosis animal models (carbon tetrachloride (CCl4), Thioacetamide (TAA)). RESULTS: We found that JAK1/2 expression was positively correlated with the progression of HCC in humans and the levels of liver fibrosis in mice. Silencing of JAK1/2 down-regulated their downstream signaling and inhibited proliferation, migration, and activation of HSCs in vitro, while Ruxolitinib had similar effects on HSCs. Importantly, Ruxolitinib significantly attenuated fibrosis progression, improved cell damage, and accelerated fibrosis reversal in the liver of mice treated with CCl4 or TAA. CONCLUSIONS: JAK1/2 regulates the function of HSCs and plays an essential role in liver fibrosis and HCC development. Its inhibitor, Ruxolitinib, may be an effective drug for preventing and treating liver fibrosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitrilas , Pirazóis , Pirimidinas , Animais , Tetracloreto de Carbono , Carcinoma Hepatocelular/patologia , Fibrose , Células Estreladas do Fígado , Humanos , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Camundongos , Nitrilas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia
15.
Opt Express ; 30(11): 18743-18761, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221669

RESUMO

Considering large dynamic optical intensity range in a water-to-air (W2A) channel, we propose two promising channel coding schemes, namely the concatenated Reed Solomon-Low Density Parity Check (RS-LDPC) code and Raptor code, for W2A visible light communication (VLC). We establish a W2A-VLC link to verify the performance under different wavy water environments and different water depths with a green light emitting diode (LED). A wave generator is adopted to emulate the wavy water surface with wave height up to 0.6 m. The receiver is fixed 3.2 m above the water, and the transmitter varies from 2.5 m to 4.0 m under the water through a up-down-moveable platform. We test the coding schemes with different code lengths and code rates under 5 MSym/s air-interface symbol rate. Experimental results show that both schemes can reduce the bit error ratio (BER) and frame error rate (FER) of a W2A-VLC system, and thus can improve the reliability. Via comparing the two codes with the same overhead and approximately the same code length, it is demonstrated that Raptor code can generally outperform the concatenated RS-LDPC code. Our research provides promising channel coding methods without feedback for a W2A-VLC system.

16.
BMC Cancer ; 22(1): 1194, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402971

RESUMO

BACKGROUND: The relative contributions of genetic and environmental factors versus unavoidable stochastic risk factors to the variation in cancer risk among tissues have become a widely-discussed topic. Some claim that the stochastic effects of DNA replication are mainly responsible, others believe that cancer risk is heavily affected by environmental and hereditary factors. Some of these studies made evidence from the correlation analysis between the lifetime number of stem cell divisions within each tissue and tissue-specific lifetime cancer risk. However, they did not consider the measurement error in the estimated number of stem cell divisions, which is caused by the exposure to different levels of genetic and environmental factors. This will obscure the authentic contribution of environmental or inherited factors. METHODS: In this study, we proposed two distinct modeling strategies, which integrate the measurement error model with the prevailing model of carcinogenesis to quantitatively evaluate the contribution of hereditary and environmental factors to cancer development. Then, we applied the proposed strategies to cancer data from 423 registries in 68 different countries (global-wide), 125 registries across China (national-wide of China), and 139 counties in Shandong province (Shandong provincial, China), respectively. RESULTS: The results suggest that the contribution of genetic and environmental factors is at least 92% to the variation in cancer risk among 17 tissues. Moreover, mutations occurring in progenitor cells and differentiated cells are less likely to be accumulated enough for cancer to occur, and the carcinogenesis is more likely to originate from stem cells. Except for medulloblastoma, the contribution of genetic and environmental factors to the risk of other 16 organ-specific cancers are all more than 60%. CONCLUSIONS: This work provides additional evidence that genetic and environmental factors play leading roles in cancer development. Therefore, the identification of modifiable environmental and hereditary risk factors for each cancer is highly recommended, and primary prevention in early life-course should be the major focus of cancer prevention.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Carcinogênese/genética , Autorrenovação Celular , Fatores de Risco
17.
J Epidemiol ; 32(5): 205-214, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33441507

RESUMO

BACKGROUND: Causal evidence of circulating lipids especially the remnant cholesterol with cardiovascular and cerebrovascular disease (CVD) is lacking. This research aimed to explore the causal roles of extensive lipid traits especially the remnant lipids in CVD. METHODS: Two-sample Mendelian randomization (TSMR) analysis was performed based on large-scale meta-analysis datasets in European ancestry. The causal effect of 15 circulating lipid profiles including 6 conventional lipids and 9 remnant lipids on coronary heart disease (CHD) and ischemic stroke (IS), as well as the subtypes, was assessed. RESULTS: Apolipoprotein B (Apo B), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were still important risk factors for CHD and myocardial infarction (MI) but not for IS. Apo B is the strongest which increased the CHD and MI risk by 44% and 41%, respectively. The odds ratios (ORs) of total TG on CHD and MI were 1.25 (95% confidence interval [CI], 1.13-1.38) and 1.24 (95% CI, 1.11-1.38), respectively. A one standard deviation difference increased TG in medium very-low-density lipoproteins (M.VLDL.TG), TG in small VLDL (S.VLDL.TG), TG in very small VLDL (XS.VLDL.TG), TG in intermediate-density lipoproteins (IDL.TG), TG in very large HDL (XL.HDL.TG), and TG in small HDL (S.HDL.TG) particles also robustly increased the risk of CHD and MI by 9-28% and 9-27%, respectively. TG in very/extremely large VLDL (XXL.VLDL.TG and XL.VLDL.TG) were insignificant or even negatively associated with CHD (in multivariable TSMR), and negatively associated with IS as well. CONCLUSION: The remnant lipids presented heterogeneity and two-sided effects for the risk of CHD and IS that may partially rely on the particle size. The findings suggested that the remnant lipids were required to be intervened according to specific components. This research confirms the importance of remnant lipids and provides causal evidence for potential targets for intervention.


Assuntos
Transtornos Cerebrovasculares , Doença das Coronárias , Apolipoproteínas B , Colesterol , HDL-Colesterol , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Humanos , Análise da Randomização Mendeliana , Triglicerídeos
18.
Biol Pharm Bull ; 45(10): 1444-1451, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35858798

RESUMO

Cartilage regenerative medicine, wherein the stem cells from adults exert a crucial role, has high potential in the treatment of defective articular cartilage. Recently, Bone marrow mesenchymal stem cells (BMSCs) are being increasingly recognized as an alternative source of adult stem cells, which are capable of differentiating into several cell types (e.g., adipocytes, chondrocytes, and osteoblasts). However, their proliferative properties and tendency to dedifferentiate restrict their use in clinical settings. Recently, a possible bioactive material PRP-exos (exosomes derived from platelet-rich plasma), has emerged, which can effectively facilitate the differentiation and proliferation of cells. Recent studies have reported that berberine (Ber), known to have anti-inflammatory properties, plays a role in osteogenesis. Since biological molecules are used in combinations, we attempted to assess the effect of Exos-Ber (PRP-exos in combination with Ber) on the chondrogenic differentiation of BMSCs in vitro. In this study, Exos-Ber was observed to promote the proliferation of BMSCs and cause their chondrogenic differentiation in vitro. Additionally, Exos-Ber could promote the migration of BMSCs and increase the protein expression of the chondrogenic genes (Collagen II, SOX9, Aggrecan). After treatment with Exos-Ber, significant induction of ß-catenin expression was observed, which could be repressed successfully by adding ß-catenin inhibitor XAV-939. Interestingly, the repression of the Wnt/ß-catenin axis also resulted in reduced gene expression levels of Collagen II, SOX9, and Aggrecan. These observations indicated that Exos-Ber facilitated the differentiation of chondrogenic BMSCs by modulating the Wnt/ß-catenin axis, which offers innovative insights into the reconstruction of cartilage.


Assuntos
Berberina , Exossomos , Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Agrecanas/metabolismo , Agrecanas/farmacologia , Berberina/farmacologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Plasma Rico em Plaquetas/metabolismo , beta Catenina/metabolismo
19.
BMC Nephrol ; 23(1): 393, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482367

RESUMO

BACKGROUND: Hemodialysis (HD) is the most important renal replacement therapy for patients with end-stage kidney disease (ESKD). Systemic inflammation is a risk factor of mortality in HD patients. Neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) are new inflammatory markers. However, previous studies have inconsistent conclusions about the predictive value of NLR, MLR and PLR on mortality of HD patients. The aim of this study was to establish an inflammation scoring system by including NLR, MLR and PLR, and evaluate the association between the inflammation score and all-cause and cardiovascular mortality in HD patients. METHODS: In this single center retrospective cohort study, 213 incident HD patients from January 1, 2015 to December 31, 2020 were included. Baseline demographic and clinical data and laboratory measurements were collected. According to the optimal cut-off values, NLR, MLR and PLR were assigned 0 or 1 point, respectively. Then, the inflammation score was obtained by adding the NLR, MLR and PLR scores. All patients were followed until July 31, 2021. The associations of the inflammation score with all-cause and cardiovascular mortality were assessed by multivariable-adjusted Cox models. RESULTS: Of 213 patients, the mean (± SD) age was 56.8 ± 14.4 years, 66.2% were men, and 32.9% with diabetes. The primary cause of ESKD was mainly chronic glomerulonephritis (46.5%) and diabetic nephropathy (28.6%). The median inflammation score was 2 (interquartile range = 1-3). During a median 30 months (interquartile range = 17-50 months) follow-up period, 53 patients had died, of which 33 deaths were caused by cardiovascular disease. After adjusting for demographics, primary diseases and other confounders in multivariable model, the inflammation score = 3 was associated with a hazard ratio for all-cause mortality of 4.562 (95% confidence interval, 1.342-15.504, P = 0.015) and a hazard ratio for cardiovascular mortality of 4.027 (95% confidence interval, 0.882-18.384, P = 0.072). CONCLUSION: In conclusion, an inflammation scoring system was established by including NLR, MLR and PLR, and the higher inflammation score was independently associated with all-cause mortality in HD patients.


Assuntos
Doenças Cardiovasculares , Neutrófilos , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Monócitos , Prognóstico , Estudos Retrospectivos , Linfócitos
20.
J Cell Physiol ; 236(6): 4195-4206, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33222181

RESUMO

Fibrosis is a common pathological change characterized by the excessive accumulation of fibrous connective tissue. Once uncontrolled, this pathological progress can lead to irreversible damage to the structure and function of organs, which is a serious threat to human health and life. Actually, the disability and death of patients caused by many chronic diseases have a closed relationship with fibrosis. The CCN protein family, including six members, is a small group of matrix proteins exhibiting structurally similar features. In the past 20 years, different biological functions of CCN proteins have been identified in various diseases. Of note, it has been recently shown that they are implicated in the key pathological process of fibrosis. In this review, we summarize the current status of knowledge regarding the role of CCN proteins involved in the pathogenesis of fibrosis diseases in detail. Furthermore, we highlight some of the underlying interaction mechanisms of CCN protein acting in fibrosis that helps to develop new drugs and determine appropriate clinical strategies for fibrotic diseases.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Matriz Extracelular/metabolismo , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Matriz Extracelular/patologia , Fibrose , Humanos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA