Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 187(13): 3445-3459.e15, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838668

RESUMO

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.


Assuntos
Mecanotransdução Celular , Imagem Individual de Molécula , Animais , Humanos , Camundongos , Fenômenos Biomecânicos , Adesão Celular , DNA/química , DNA/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos , Linhagem Celular , Sobrevivência Celular , Pareamento de Bases , Calibragem
2.
Anal Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975840

RESUMO

New strategies for the simultaneous and portable detection of multiple enzyme activities are highly desirable for clinical diagnosis and home care. However, the methods developed thus far generally suffer from high costs, cumbersome procedures, and heavy reliance on large-scale instruments. To satisfy the actual requirements of rapid, accurate, and on-site detection of multiple enzyme activities, we report herein a smartphone-assisted programmable microfluidic paper-based analytical device (µPAD) that utilizes colorimetric and photothermal signals for simultaneous, accurate, and visual quantitative detection of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Specifically, the operation of this µPAD sensing platform is based on two sequential steps. Cobalt-doped mesoporous cerium oxide (Co-m-CeO2) with remarkable peroxidase-like activities under neutral conditions first catalytically decomposes H2O2 for effectively converting colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The subsequent addition of ALP or BChE to their respective substrates produces a reducing substance that can somewhat inhibit the oxTMB transformation for compromised colorimetric and photothermal signals of oxTMB. Notably, these two-step bioenzyme-nanozyme cascade reactions strongly support the straightforward and excellent processability of this platform, which exhibit lower detection limits for ALP and BChE with a detection limit for BChE an order of magnitude lower than those of the other reported paper-based detection methods. The practicability and efficiency of this platform are further demonstrated through the analysis of clinical serum samples. This innovative platform exhibits great potential as a facile yet robust approach for simultaneous, accurate, and on-site visual detection of multiple enzyme activities in authentic samples.

3.
Microb Ecol ; 87(1): 43, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363394

RESUMO

Biological soil crusts (biocrusts) are considered "desert ecosystem engineers" because they play a vital role in the restoration and stability maintenance of deserts, including those cold sandy land ecosystems at high latitudes, which are especially understudied. Microorganisms participate in the formation and succession of biocrusts, contributing to soil properties' improvement and the stability of soil aggregates, and thus vegetation development. Accordingly, understanding the composition and successional characteristics of microorganisms is a prerequisite for analyzing the ecological functions of biocrusts and related applications. Here, the Hulun Buir Sandy Land region in northeastern China-lying at the highest latitude of any sandy land in the country-was selected for study. Through a field investigation and next-generation sequencing (Illumina MiSeq PE300 Platform), our goal was to assess the shifts in diversity and community composition of soil bacteria and fungi across different stages during the succession of biocrusts in this region, and to uncover the main factors involved in shaping their soil microbial community. The results revealed that the nutrient enrichment capacity of biocrusts for available nitrogen, total nitrogen, total phosphorus, total content of water-soluble salt, available potassium, soil organic matter, and available phosphorus was progressively enhanced by the succession of cyanobacterial crusts to lichen crusts and then to moss crusts. In tandem, soil bacterial diversity increased as biocrust succession proceeded but fungal diversity decreased. A total of 32 bacterial phyla and 11 fungal phyla were identified, these also known to occur in other desert ecosystems. Among those taxa, the relative abundance of Proteobacteria and Cyanobacteria significantly increased and decreased, respectively, along the cyanobacterial crust-lichen-moss crust successional gradient. However, for Actinobacteria, Chloroflexi, and Acidobacteria their changed relative abundance was significantly hump-shaped, increasing in the shift from cyanobacterial crust to lichen crust, and then decreasing as lichen crust shifted to moss crust. In this process, the improved soil properties effectively enhanced soil bacterial and fungal community composition. Altogether, these findings broaden our understanding about how soil microbial properties can change during the succession of biocrusts in high-latitude, cold sandy land ecosystems.


Assuntos
Cianobactérias , Líquens , Microbiota , Ecossistema , Solo , Areia , Microbiologia do Solo , Nitrogênio , Fósforo , China
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301864

RESUMO

The dynamic change of cell-surface glycans is involved in diverse biological and pathological events such as oncogenesis and metastasis. Despite tremendous efforts, it remains a great challenge to selectively distinguish and label glycans of different cancer cells or cancer subtypes. Inspired by biomimetic cell membrane-coating technology, herein, we construct pH-responsive azidosugar liposomes camouflaged with natural cancer-cell membrane for tumor cell-selective glycan engineering. With cancer cell-membrane camouflage, the biomimetic liposomes can prevent protein corona formation and evade phagocytosis of macrophages, facilitating metabolic glycans labeling in vivo. More importantly, due to multiple membrane receptors, the biomimetic liposomes have prominent cell selectivity to homotypic cancer cells, showing higher glycan-labeling efficacy than a single-ligand targeting strategy. Further in vitro and in vivo experiments indicate that cancer cell membrane-camouflaged azidosugar liposomes not only realize cell-selective glycan imaging of different cancer cells and triple-negative breast cancer subtypes but also do well in labeling metastatic tumors. Meanwhile, the strategy is also applicable to the use of tumor tissue-derived cell membranes, which shows the prospect for individual diagnosis and treatment. This work may pave a way for efficient cancer cell-selective engineering and visualization of glycans in vivo.


Assuntos
Biomimética/métodos , Neoplasias da Mama/patologia , Membrana Celular/metabolismo , Lipossomos/metabolismo , Neoplasias Pulmonares/secundário , Fagocitose , Polissacarídeos/análise , Animais , Apoptose , Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Engenharia Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Nanopartículas/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mar Drugs ; 21(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999417

RESUMO

In our chemical investigation into Penicillium sp. UJNMF0740 derived from mangrove sediment, fourteen indole diterpene analogs, including four new ones, are purified by multiple chromatographic separation methods, with their structures being elucidated by the analyses of NMR, HR-ESIMS, and ECD data. The antibacterial and neuroprotective effects of these isolates were examined, and only compounds 6 and 9 exhibited weak antibacterial activity, while compounds 5, 8, and 10 showed protective effects against the injury of PC12 cells induced by 6-hydroxydopamine (6-OHDA). Additionally, compound 5 could suppress the apoptosis and production of reactive oxygen species (ROS) in 6-OHDA-stimulated PC12 cells as well as trigger the phosphorylation of PI3K and Akt. Taken together, our work enriches the structural diversity of indole diterpenes and hints that compounds of this skeleton can repress the 6-OHDA-induced apoptosis of PC12 cells via regulating the PI3K/Akt signaling pathway, which provides evidence for the future utilization of this fascinating class of molecules as potential neuroprotective agents.


Assuntos
Diterpenos , Fármacos Neuroprotetores , Penicillium , Ratos , Animais , Células PC12 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Oxidopamina/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Penicillium/química , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Diterpenos/farmacologia , Diterpenos/química , Indóis/farmacologia , Indóis/química , Antibacterianos/farmacologia , Fármacos Neuroprotetores/farmacologia
6.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770989

RESUMO

Bacterial infections are a serious threat to human health, and the rapid emergence of bacterial resistance caused by the abuse of antibiotics exacerbates the seriousness of this problem. Effectively utilizing natural products to construct new antimicrobial strategies is regarded as a promising way to suppress the rapid development of bacterial resistance. In this paper, we fabricated a new type of natural antibacterial patch by using a natural active substance (allicin) as an antibacterial agent and the porous structure of the white pulp of pomelo peel as a scaffold. The antibacterial activity and mechanisms were systematically investigated by using various technologies, including the bacteriostatic circle, plate counting, fluorescence staining, and a scanning electron microscope. Both gram-positive and negative bacteria can be effectively killed by this patch. Moreover, this natural antibacterial patch also showed significant anti-skin infection activity. This study provides a green approach for constructing efficient antibacterial patches.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Porosidade , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
7.
World J Microbiol Biotechnol ; 40(2): 51, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146036

RESUMO

Vibrio alginolyticus (V. alginolyticus) is a common pathogen in the ocean. In addition to causing serious economic losses in aquaculture, it can also infect humans. The rapid detection of nucleic acids of V. alginolyticus with high sensitivity and specificity in the field is very important for the diagnosis and treatment of infection caused by V. alginolyticus. Here, we established a simple, fast and effective molecular method for the identification of V. alginolyticus that does not rely on expensive instruments and professionals. The method integrates recombinase polymerase amplification (RPA) technology with CRISPR system in a single PCR tube. Using this method, the results can be visualized by lateral flow dipstick (LFD) in less than 50 min, we named this method RPA-CRISPR/Cas13a-LFD. The method was confirmed to achieve high specificity for the detection of V. alginolyticus with no cross-reactivity with similar Vibrio and common clinical pathogens. This diagnostic method shows high sensitivity; the detection limit of the RPA-CRISPR/Cas13a-LFD is 10 copies/µL. We successfully identified 35 V. alginolyticus strains from a total of 55 different bacterial isolates and confirmed their identity by (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS). We also applied this method on infected mice blood, and the results were both easily and rapidly obtained. In conclusion, RPA-CRISPR/Cas13a-LFD offers great potential as a useful tool for reliable and rapid diagnosis of V. alginolyticus infection, especially in limited conditions.


Assuntos
Recombinases , Vibrio alginolyticus , Animais , Humanos , Camundongos , Recombinases/metabolismo , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
8.
J Lipid Res ; 62: 100052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33636162

RESUMO

High-fat (HF) diet-induced obesity precipitates multiple metabolic disorders including insulin resistance, glucose intolerance, oxidative stress, and inflammation, resulting in the initiation of cell death programs. Previously, we demonstrated murine germline knockout of calcium-independent phospholipase A2γ (iPLA2γ) prevented HF diet-induced weight gain, attenuated insulin resistance, and decreased mitochondrial permeability transition pore (mPTP) opening leading to alterations in bioenergetics. To gain insight into the specific roles of hepatic iPLA2γ in mitochondrial function and cell death under metabolic stress, we generated a hepatocyte-specific iPLA2γ-knockout (HEPiPLA2γKO). Using this model, we compared the effects of an HF diet on wild-type versus HEPiPLA2γKO mice in eicosanoid production and mitochondrial bioenergetics. HEPiPLA2γKO mice exhibited higher glucose clearance rates than WT controls. Importantly, HF-diet induced the accumulation of 12-hydroxyeicosatetraenoic acid (12-HETE) in WT liver which was decreased in HEPiPLA2γKO. Furthermore, HF-feeding markedly increased Ca2+ sensitivity and resistance to ADP-mediated inhibition of mPTP opening in WT mice. In contrast, ablation of iPLA2γ prevented the HF-induced hypersensitivity of mPTP opening to calcium and maintained ADP-mediated resistance to mPTP opening. Respirometry revealed that ADP-stimulated mitochondrial respiration was significantly reduced by exogenous 12-HETE. Finally, HEPiPLA2γKO hepatocytes were resistant to calcium ionophore-induced lipoxygenase-mediated lactate dehydrogenase release. Collectively, these results demonstrate that an HF diet increases iPLA2γ-mediated hepatic 12-HETE production leading to mitochondrial dysfunction and hepatic cell death.


Assuntos
Dieta Hiperlipídica
9.
J Biol Chem ; 295(16): 5307-5320, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32161117

RESUMO

The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Plaquetas/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Lisofosfatidilcolinas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Ácidos Graxos Insaturados/metabolismo , Fosfolipases A2 do Grupo VI/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Spodoptera
10.
Chemistry ; 27(14): 4738-4745, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33405257

RESUMO

Unsatisfactory oxygen mobility is a considerable barrier to the development of perovskites for low-temperature volatile organic compounds (VOCs) oxidation. This work introduced small amounts of dispersed non-metal boron into the LaCoO3 crystal through an easy sol-gel method to create more oxygen defects, which are conducive to the catalytic performance of propane (C3 H8 ) oxidation. It reveals that moderate addition of boron successfully induces a high distortion of the LaCoO3 crystal, decreases the perovskite particle size, and produces a large proportion of bulk Co2+ species corresponding to abundant oxygen vacancies. Additionally, surface Co3+ species, as the acid sites, which are active for cleaving the C-H bonds of C3 H8 molecules, are enriched. As a result, the LCB-7 (molar ratio of Co/B=0.93:0.07) displays the best C3 H8 oxidation activity. Simultaneously, the above catalyst exhibits superior thermal stability against CO2 and H2 O, lasting 200 h. This work provides a new strategy for modifying the catalytic VOCs oxidation performance of perovskites by the regulation of amorphous boron dispersion.

11.
Molecules ; 26(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477459

RESUMO

In this study, a laccase LAC-Yang1 was successfully purified from a white-rot fungus strain Pleurotus ostreatus strain yang1 with high laccase activity. The enzymatic properties of LAC-Yang1 and its ability to degrade and detoxify chlorophenols such as 2,6-dichlorophenol and 2,3,6-trichlorophenol were systematically studied. LAC-Yang1 showed a strong tolerance to extremely acidic conditions and strong stability under strong alkaline conditions (pH 9-12). LAC-Yang1 also exhibited a strong tolerance to different inhibitors (EDTA, SDS), metal ions (Mn2+, Cu2+, Mg2+, Na+, K+, Zn2+, Al3+, Co2+, and metal ion mixtures), and organic solvents (glycerol, propylene glycol). LAC-Yang1 showed good stability in the presence of Mg2+, Mn2+, glycerol, and ethylene glycol. Our results reveal the strong degradation ability of this laccase for high concentrations of chlorophenols (especially 2,6-dichlorophenol) and chlorophenol mixtures (2,6-dichlorophenol + 2,3,6-trichlorophenol). LAC-Yang1 displayed a strong tolerance toward a variety of metal ions (Na2+, Zn2+, Mn2+, Mg2+, K+ and metal ion mixtures) and organic solvents (glycerol, ethylene glycol) in its degradation of 2,6-dichlorophenol and 2,3,6-trichlorophenol. The phytotoxicity of 2,6-dichlorophenol treated by LAC-Yang1 was significantly reduced or eliminated. LAC-Yang1 demonstrated a good detoxification effect on 2,6-dichlorophenol while degrading this compound. In conclusion, LAC-Yang1 purified from Pleurotus ostreatus has great application value and potential in environmental biotechnology, especially the efficient degradation and detoxification of chlorophenols.


Assuntos
Biodegradação Ambiental , Clorofenóis/química , Clorofenóis/metabolismo , Poluentes Ambientais/metabolismo , Lacase/metabolismo , Pleurotus/enzimologia , Pleurotus/crescimento & desenvolvimento
12.
J Biol Chem ; 293(1): 115-129, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158256

RESUMO

Congestive heart failure typically arises from cardiac myocyte necrosis/apoptosis, associated with the pathological opening of the mitochondrial permeability transition pore (mPTP). mPTP opening decreases the mitochondrial membrane potential leading to the activation of Ca2+-independent phospholipase A2γ (iPLA2γ) and the production of downstream toxic metabolites. However, the array of enzymatic mediators and the exact chemical mechanisms responsible for modulating myocardial mPTP opening remain unclear. Herein, we demonstrate that human heart failure activates specific myocardial mitochondrial phospholipases that increase Ca2+-dependent production of toxic hydroxyeicosatetraenoic acids (HETEs) and attenuate the activity of phospholipases that promote the synthesis of protective epoxyeicosatrienoic acids (EETs). Mechanistically, HETEs activated the Ca2+-induced opening of the mPTP in failing human myocardium, and the highly selective pharmacological blockade of either iPLA2γ or lipoxygenases attenuated mPTP opening in failing hearts. In contrast, pharmacological inhibition of cytochrome P450 epoxygenases opened the myocardial mPTP in human heart mitochondria. Remarkably, the major mitochondrial phospholipase responsible for Ca2+-activated release of arachidonic acid (AA) in mitochondria from non-failing hearts was calcium-dependent phospholipase A2ζ (cPLA2ζ) identified by sequential column chromatographies and activity-based protein profiling. In contrast, iPLA2γ predominated in failing human myocardium. Stable isotope kinetics revealed that in non-failing human hearts, cPLA2ζ metabolically channels arachidonic acid into EETs, whereas in failing hearts, increased iPLA2γ activity channels AA into toxic HETEs. These results mechanistically identify the sequelae of pathological remodeling of human mitochondrial phospholipases in failing myocardium. This remodeling metabolically channels AA into toxic HETEs promoting mPTP opening, which induces necrosis/apoptosis leading to further progression of heart failure.


Assuntos
Fosfolipases A2 do Grupo VI/metabolismo , Insuficiência Cardíaca/metabolismo , Ácidos Hidroxieicosatetraenoicos/biossíntese , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/enzimologia , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miocárdio/enzimologia , Miocárdio/metabolismo , Miocárdio/patologia , Permeabilidade , Fosfolipases A2/metabolismo
13.
Small ; 15(51): e1904870, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31750615

RESUMO

Tumor hypoxia significantly diminishes the efficacy of reactive oxygen species (ROS)-based therapy, mainly because the generation of ROS is highly oxygen dependent. Recently reported hypoxia-irrelevant radical initiators (AIBIs) exhibit promising potential for cancer therapy under different oxygen tensions. However, overexpressed glutathione (GSH) in cancer cells would potently scavenge the free radicals produced from AIBI before their arrival to the specific site and dramatically limit the therapeutic efficacy. A synergistic antitumor platform (MoS2 @AIBI-PCM nanoflowers) is constructed by incorporating polyethylene-glycol-functionalized molybdenum disulfide (PEG-MoS2 ) nanoflowers with azo initiator and phase-change material (PCM). Under near-infrared laser (NIR) irradiation, the photothermal feature of PEG-MoS2 induces the decomposition of AIBI to produce free radicals. Furthermore, PEG-MoS2 can facilitate GSH oxidation without releasing toxic metal ions, greatly promoting tumor apoptosis and avoiding the introduction of toxic metal ions. This is the first example of the use of intelligent MoS2 -based nanoflowers as a benign GSH scavenger for enhanced cancer treatment.


Assuntos
Dissulfetos/química , Glutationa/química , Molibdênio/química , Neoplasias/terapia , Linhagem Celular Tumoral , Radicais Livres/química , Humanos , Polietilenoglicóis/química , Espécies Reativas de Oxigênio
14.
Small ; 15(24): e1901116, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31069962

RESUMO

The inhibition of amyloid-ß (Aß) aggregation by photo-oxygenation has become an effective way of treating Alzheimer's disease (AD). New near-infrared (NIR) activated treatment agents, which not only possess high photo-oxygenation efficiency, but also show low biotoxicity, are urgently needed. Herein, for the first time, it is demonstrated that NIR activated black phosphorus (BP) could serve as an effective nontoxic photo-oxidant for amyloid-ß peptide in vitro and in vivo. The nanoplatform BP@BTA (BTA: one of thioflavin-T derivatives) possesses high affinity to the Aß peptide due to specific amyloid selectivity of BTA. Importantly, under NIR light, BP@BTA can significantly generate a high quantum yield of singlet oxygen (1 O2 ) to oxygenate Aß, thereby resulting in inhibiting the aggregation and attenuating Aß-induced cytotoxicity. In addition, BP could finally degrade into nontoxic phosphate, which guarantees the biosafety. Using transgenic Caenorhabditis elegans CL2006 as AD model, the results demonstrate that the 1 O2 -generation system could dramatically promote life-span extension of CL2006 strain by decreasing the neurotoxicity of Aß.


Assuntos
Peptídeos beta-Amiloides/efeitos da radiação , Oxigênio/metabolismo , Fósforo/uso terapêutico , Fototerapia/métodos , Agregação Patológica de Proteínas/prevenção & controle , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos da radiação , Modelos Animais de Doenças , Humanos , Raios Infravermelhos/uso terapêutico , Oxirredução/efeitos da radiação , Fósforo/química , Agregação Patológica de Proteínas/metabolismo
15.
Chemistry ; 25(51): 11852-11858, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31361361

RESUMO

Proteolysis of amyloid-ß (Aß) is a promising approach against Alzheimer's disease. However, it is not feasible to employ natural hydrolases directly because of their cumbersome preparation and purification, poor stability, and hazardous immunogenicity. Therefore, artificial enzymes have been developed as potential alternatives to natural hydrolases. Since specific cleavage sites of Aß are usually embedded inside the ß-sheet structures that restrict access by artificial enzymes, this strongly hinders their efficiency for practical applications. Herein, we construct a NIR (near-IR) controllable artificial metalloprotease (MoS2 -Co) using a molybdenum disulfide nanosheet (MoS2 ) and a cobalt complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Codota). Evidenced by detailed experimental and theoretical studies, the NIR-enhanced MoS2 -Co can circumvent the restriction by simultaneously inhibition of ß-sheet formation and destroying ß-sheet structures of the preformed Aß aggregates in living cell. Furthermore, our designed MoS2 -Co is an easy to graft Aß-target agent that prevents misdirected or undesirable hydrolysis reactions, and has been demonstrated to cross the blood brain barrier. This method can be adapted for hydrolysis of other kinds of amyloids.


Assuntos
Peptídeos beta-Amiloides/química , Barreira Hematoencefálica/metabolismo , Dissulfetos/química , Metaloproteases/química , Molibdênio/química , Doença de Alzheimer , Barreira Hematoencefálica/química , Humanos , Metaloproteases/metabolismo , Espectrofotometria Infravermelho
16.
Bioorg Med Chem Lett ; 29(11): 1430-1433, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30975625

RESUMO

A series of nitropyridyl-based dichloropropene ethers were prepared and evaluated for their insecticidal activities against main lepidopteran pests such as M. separate, P. xylostella and P. litura. The compounds showed a broad-spectrum of remarkable insecticidal activities. Especially 4a (2,6-dichloro-4-(3,3-dichloroallyloxy)phenyl 3-[5-nitro-2-pyridyloxy]propyl ether) and 11a (2-(4-(3-(2,6-dichloro-4-((3,3-dichloroallyl)oxy)phenoxy)propoxy)phenoxy)-5-nitropyridine) displayed potent activities comparable to that of Pyridalyl, the only commercialized dichloropropene ether insecticide thus far. The structure-activity relationship was also discussed.


Assuntos
Éteres/farmacologia , Inseticidas/farmacologia , Piridinas/farmacologia , Animais , Éteres/síntese química , Inseticidas/síntese química , Estrutura Molecular , Mariposas/efeitos dos fármacos , Piridinas/síntese química , Relação Estrutura-Atividade
17.
J Biol Chem ; 291(37): 19687-700, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27453526

RESUMO

Calcium-independent phospholipase A2γ (iPLA2γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA2γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA2γ knock-out (CMiPLA2γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA2γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA2γKO mice demonstrated attenuated Ca(2+)-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA2γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA2γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca(2+) by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA2γ, these results are consistent with salvage of myocardium after I/R by iPLA2γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Animais , Cálcio/metabolismo , Fosfolipases A2 do Grupo VI/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Traumatismo por Reperfusão Miocárdica/genética , Especificidade de Órgãos , Oxirredução
18.
Hum Mutat ; 36(3): 301-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25512002

RESUMO

Mitochondriopathies are a group of clinically heterogeneous genetic diseases caused by defects in mitochondrial metabolism, bioenergetic efficiency, and/or signaling functions. The large majority of proteins involved in mitochondrial function are encoded by nuclear genes, with many yet to be associated with human disease. We performed exome sequencing on a young girl with a suspected mitochondrial myopathy that manifested as progressive muscle weakness, hypotonia, seizures, poor weight gain, and lactic acidosis. She was compound heterozygous for two frameshift mutations, p.Asn112HisfsX29 and p.Leu659AlafsX4, in the PNPLA8 gene, which encodes mitochondrial calcium-independent phospholipase A2 γ (iPLA2 γ). Western blot analysis of affected muscle displayed the absence of PNPLA8 protein. iPLA2 s are critical mediators of a variety of cellular processes including growth, metabolism, and lipid second messenger generation, exerting their functions through catalyzing the cleavage of the acyl groups in glycerophospholipids. The clinical presentation, muscle histology and the mitochondrial ultrastructural abnormalities of this proband are highly reminiscent of Pnpla8 null mice. Although other iPLA2 -related diseases have been identified, namely, infantile neuroaxonal dystrophy and neutral lipid storage disease with myopathy, this is the first report of PNPLA8-related disease in a human. We suggest PNPLA8 join the increasing list of human genes involved in lipid metabolism associated with neuromuscular diseases due to mitochondrial dysfunction.


Assuntos
Fosfolipases A2 do Grupo IV/genética , Mitocôndrias/patologia , Animais , Cálcio/metabolismo , Criança , Feminino , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
19.
J Pathol ; 234(4): 526-37, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25130389

RESUMO

A wide range of genes involved in breast cancer metastasis have been reported to be related to the microenvironment. We studied the role of discoidin domain receptor 2 (DDR2), a collagen-binding receptor, in breast cancer progression under hypoxic conditions. We showed that DDR2 protein expression closely correlated with the expression of hypoxic marker HIF-1α in clinical breast cancer specimens. The in vitro data demonstrated that hypoxia treatment increased the levels of both expression and phosphorylation of DDR2 in human breast cancer cell lines. In vivo, orthotopic breast tumour xenografts with DDR2 knockdown displayed reduced dissemination and significant prevention in pulmonary and lymphatic metastasis; conversely, these processes were significantly facilitated by the enforced expression of the activated form of DDR2. Further mechanism studies indicated that DDR2 plays an indispensable role in a series of hypoxia-induced behaviours of breast cancer cells, including migration, invasion, and epithelial-mesenchymal transition (EMT). The transcription factor Snail was found to mediate DDR2-induced down-regulation of the cell-cell adhesion molecule E-cadherin. It was also documented that there is a correlation between DDR2 and E-cadherin expression with the presence of lymph node metastases in 160 cases of invasive human breast carcinoma. In addition, we provided evidence that DDR2 silencing in breast cancer cells prevents the hypoxia-induced activation of ERK MAPK, suggesting its potential involvement in mediating the effect of DDR2 on hypoxia-induced signalling. Based on the results of this study, we conclude that DDR2 participates in hypoxia-induced breast cancer metastasis through the regulation of cell migration, invasion, and EMT, and thus may serve as an accessible therapeutic target for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/patologia , Hipóxia Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Invasividade Neoplásica/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Animais , Neoplasias da Mama/metabolismo , Receptores com Domínio Discoidina , Feminino , Xenoenxertos , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real
20.
J Pathol ; 232(4): 436-48, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24293323

RESUMO

Discoidin domain receptor 2 (DDR2) is a unique receptor tyrosine kinase (RTK) that signals in response to collagen binding and is implicated in tumour malignant phenotypes such as invasion and metastasis. Although it has been reported that DDR2 expression is up-regulated in activated endothelial cells (ECs), functional studies are lacking. Herein, we found that enforced expression of DDR2 promoted proliferation, migration and tube formation of primary human umbilical vein endothelial cells (HUVECs). The results of immunohistochemical analysis showed a strikingly high level of DDR2 in human tumour ECs. Most significantly, we discovered that a host deficiency of DDR2 inhibits subcutaneous angiogenesis induced by either VEGF or tumour cells. In addition, the remaining tumour vessels in DDR2-deficient mice exhibit some normalized properties. These vascular phenotypes are accompanied by the up-regulation of anti-angiogenic genes and down-regulation of pro-angiogenic genes, as well as by alleviated tumour hypoxia. By use of a tail vein metastasis model of melanoma, we uncovered that loss of stromal DDR2 also suppresses tumour metastasis to the lung. Hence, our current data disclose a new mechanism by which DDR2 affects tumour progression, and may strengthen the feasibility of targeting DDR2 as an anticancer strategy.


Assuntos
Movimento Celular , Células Endoteliais/enzimologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/prevenção & controle , Melanoma Experimental/enzimologia , Neovascularização Patológica , Neovascularização Fisiológica , Receptores Proteína Tirosina Quinases/deficiência , Receptores Mitogênicos/deficiência , Neoplasias Cutâneas/enzimologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Receptores com Domínio Discoidina , Células Endoteliais/patologia , Genótipo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/genética , Melanoma Experimental/secundário , Camundongos , Camundongos Knockout , Invasividade Neoplásica , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/genética , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Tempo , Transfecção , Carga Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA