RESUMO
BACKGROUND: Plant-specific TIFY proteins play crucial roles in regulating plant growth, development, and various stress responses. However, there is no information available about this family in Artemisia argyi, a well-known traditional medicinal plant with great economic value. RESULTS: A total of 34 AaTIFY genes were identified, including 4 TIFY, 22 JAZ, 5 PPD, and 3 ZML genes. Structural, motif scanning, and phylogenetic relationships analysis of these genes revealed that members within the same group or subgroup exhibit similar exon-intron structures and conserved motif compositions. The TIFY genes were unevenly distributed across the 15 chromosomes. Tandem duplication events and segmental duplication events have been identified in the TIFY family in A. argyi. These events have played a crucial role in the gene multiplication and compression of different subfamilies within the TIFY family. Promoter analysis revealed that most AaTIFY genes contain multiple cis-elements associated with stress response, phytohormone signal transduction, and plant growth and development. Expression analysis of roots and leaves using RNA-seq data revealed that certain AaTIFY genes showed tissue-specific expression patterns, and some AaTIFY genes, such as AaTIFY19/29, were found to be involved in regulating salt and saline-alkali stresses. In addition, RT-qPCR analysis showed that TIFY genes, especially AaTIFY19/23/27/29, respond to a variety of hormonal treatments, such as MeJA, ABA, SA, and IAA. This suggested that TIFY genes in A. argyi regulate plant growth and respond to different stresses by following different hormone signaling pathways. CONCLUSION: Taken together, our study conducted a comprehensive identification and analysis of the TIFY gene family in A. argyi. These findings suggested that TIFY might play an important role in plant development and stress responses, which laid a valuable foundation for further understanding the function of TIFY genes in multiple stress responses and phytohormone crosstalk in A. argyi.
Assuntos
Artemisia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Artemisia/genética , Artemisia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Genoma de Planta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regiões Promotoras Genéticas , Cromossomos de Plantas/genéticaRESUMO
Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.
Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Benzofenantridinas , Corydalis/genética , Corydalis/química , Corydalis/metabolismo , Alcaloides/metabolismo , Extratos Vegetais/químicaRESUMO
AIM: To discover the populations of mesenchymal stem cells (MSCs) derived from different layers of human maxillary sinus membrane (hMSM) and evaluate their osteogenic capability. MATERIALS AND METHODS: hMSM was isolated into a monolayer using the combined method of physical separation and enzymatic digestion. The localization of MSCs in hMSM was performed by immunohistological staining and other techniques. Lamina propria layer-derived MSCs (LMSCs) and periosteum layer-derived MSCs (PMSCs) from hMSM were expanded using the explant cell culture method and identified by multilineage differentiation assays, colony formation assay, flow cytometry and so on. The biological characteristics of LMSCs and PMSCs were compared using RNA sequencing, reverse transcription and quantitative polymerase chain reaction, immunofluorescence staining, transwell assay, western blotting and so forth. RESULTS: LMSCs and PMSCs from hMSMs were both CD73-, CD90- and CD105-positive, and CD34-, CD45- and HLA-DR-negative. LMSCs and PMSCs were identified as CD171+/CD90+ and CD171-/CD90+, respectively. LMSCs displayed stronger proliferation capability than PMSCs, and PMSCs presented stronger osteogenic differentiation capability than LMSCs. Moreover, PMSCs could recruit and promote osteogenic differentiation of LMSCs. CONCLUSIONS: This study identified and isolated two different types of MSCs from hMSMs. Both MSCs served as good potential candidates for bone regeneration.
Assuntos
Diferenciação Celular , Seio Maxilar , Células-Tronco Mesenquimais , Osteogênese , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Seio Maxilar/citologia , Citometria de Fluxo , Proliferação de Células , Células Cultivadas , Separação Celular/métodos , Masculino , Adulto , Feminino , Periósteo/citologiaRESUMO
Benzylisoquinoline alkaloids (BIAs) are a type of secondary metabolite with clinical application value. (S)-stylopine is a special BIA which contains methylenedioxy bridge structures. CYP719As could catalyze the methylenedioxy bridge-formation on the A or D rings of protoberberine alkaloids, while displaying significant substrate regiospecificity. To explore the substrate preference of CYP719As, we cloned and identified five CyCYP719A candidates from Corydalis yanhusuo. Two CyCYP719As (CyCYP719A39 and CyCYP719A42) with high catalytic efficiency for the methylenedioxy bridge-formation on the D or A rings were characterized, respectively. The residues (Leu 294 for CyCYP719A42 and Asp 289 for CyCYP719A39) were identified as the key to controlling the regioselectivity of CYP719As affecting the methylenedioxy bridge-formation on the A or D rings by homology modeling and mutation analysis. Furthermore, for de novo production of BIAs, CyCYP719A39, CyCYP719A42, and their mutants were introduced into the (S)-scoulerine-producing yeast to produce 32 mg/L (S)-stylopine. These results lay a foundation for understanding the structure-function relationship of CYP719A-mediated methylenedioxy bridge-formation and provide yeast strains for the BIAs production by synthetic biology.
Assuntos
Alcaloides , Benzilisoquinolinas , Benzilisoquinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides/metabolismoRESUMO
Two-dimensional metal-organic framework (MOF) composites were produced by incorporating Fe-MOFs into reduced graphene oxide (rGO) nanosheets to form Fe-MOF/rGO composites by hydrothermal synthesis. SEM, TEM, XRD, XPS, and measurements of contact angles were used to characterize the composites. TEM studies revealed that the rod-like-shaped Fe-MOFs were extensively dispersed on the rGO sheets. Incorporating Fe-MOF into rGO significantly improves performance due to the large surface area, chemical stability, and high electrical conductivity. The response signals for the electrochemical sensing performance of Fe-MOF/rGO-modified electrodes to nitrofurazone (NFZ) were significantly enhanced. Differential pulse voltammetry was used to detect the NFZ, and the MOF/rGO sensor possesses a lower detection limit (0.77µM) with two dynamic ranges from 0.6-60 to 128-499.3 µM and high sensitivity (1.909 µA·mM-1·cm-2). Moreover, the anti-interference properties of the sensor were quite reproducible and stable. To understand the mechanism responsible for the enhanced sensing performance of the composite, grand canonical Monte Carlo calculations were performed for Fe-MOF/rGO composites with five unit cells of Fe-MOF and four layers of rGO. We attributed the improvement to the fact that the interface between the Fe-MOF and rGO absorbed increased NFZ molecules. The findings reported herein confirm that such Fe-MOF/rGO composites have significantly improved electrochemical performance and practical applicability of sensing nitrofurazone.
RESUMO
The process of repairing significant bone defects requires the recruitment of a considerable number of cells for osteogenesis-related activities, which implies the consumption of a substantial amount of oxygen and nutrients. Therefore, the limited supply of nutrients and oxygen at the defect site is a vital constraint that affects the regenerative effect, which is closely related to the degree of a well-established vascular network. Hypoxia-inducible factor (HIF-1α), which is an essential transcription factor activated in hypoxic environments, plays a vital role in vascular network construction. HIF-1α, which plays a central role in regulating cartilage and bone formation, induces vascular invasion and differentiation of osteoprogenitor cells to promote and maintain extracellular matrix production by mediating the adaptive response of cells to changes in oxygen levels. However, the application of HIF-1α in bone tissue engineering is still controversial. As such, clarifying the function of HIF-1α in regulating the bone regeneration process is one of the urgent issues that need to be addressed. This review provides insight into the mechanisms of HIF-1α action in bone regeneration and related recent advances. It also describes current strategies for applying hypoxia induction and hypoxia mimicry in bone tissue engineering, providing theoretical support for the use of HIF-1α in establishing a novel and feasible bone repair strategy in clinical settings.
Assuntos
Regeneração Óssea , Osso e Ossos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Engenharia Tecidual , Humanos , Regeneração Óssea/genética , Regeneração Óssea/fisiologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , OxigênioRESUMO
Salvia is a large genus with hundreds of species used in traditional Chinese medicine. Tanshinones are a highly representative class of exclusive compounds found in the Salvia genus that exhibit significant biological activity. Tanshinone components have been identified in 16 Salvia species. The CYP76AH subfamily (P450) is crucial for the synthesis of tanshinone due to its catalytic generation of polyhydroxy structures. In this study, a total of 420 CYP76AH genes were obtained, and phylogenetic analysis showed their clear clustering relationships. Fifteen CYP76AH genes from 10 Salvia species were cloned and studied from the perspectives of evolution and catalytic efficiency. Three CYP76AHs with significantly improved catalytic efficiency compared to SmCYP76AH3 were identified, providing efficient catalytic elements for the synthetic biological production of tanshinones. A structure-function relationship study revealed several conserved residues that might be related to the function of CYP76AHs and provided a new mutation direction for the study of the directed evolution of plant P450.
Assuntos
Salvia miltiorrhiza , Salvia , Salvia/genética , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/química , Filogenia , Abietanos/química , Raízes de Plantas/químicaRESUMO
The exploration of functional films using sustainable cellulose-based materials to replace plastics has been of much interest. In this work, two kinds of lignin nanoparticles (LNPs) were mixed with cellulose nanofibrils (CNFs) for the fabrication of composite films with biodegradable, flexible and ultraviolet blocking performances. LNPs isolated from p-toluenesulfonic acid hydrolysis was easily recondensed and deposited on the surface of composite film, resulting in a more uneven surface; however, the composite film consisting of CNFs and LNPs isolated from maleic acid hydrolysis exhibited a homogeneous surface. Compared to pure CNF film, the composite CNF/LNP films exhibited higher physical properties (tensile strength of 164 MPa and Young's modulus of 8.0 GPa), a higher maximal weight loss temperature of 310 °C, and a perfect UVB blocking performance of 95.2%. Meanwhile, the composite film had a lower environmental impact as it could be rapidly biodegraded in soil and manmade seawater. Overall, our results open new avenues for the utilization of lignin nanoparticles in biopolymer composites to produce functional and biodegradable film as a promising alternative to petrochemical plastics.
Assuntos
Nanofibras , Nanopartículas , Lignina/química , Nanofibras/química , Celulose/química , Nanopartículas/química , Resistência à TraçãoRESUMO
Rigid polyurethane (RPUF) was widely used in external wall insulation materials due to its good thermal insulation performance. In this study, a series of RPUF and RPUF-R composites were prepared using steel slag (SS) and dimelamine pyrophosphate (DMPY) as flame retardants. The RPUF composites were characterized by thermogravimetric (TG), limiting oxygen index (LOI), cone calorimetry (CCT), and thermogravimetric infrared coupling (TG-FTIR). The results showed that the LOI of the RPUF-R composites with DMPY/SS loading all reached the combustible material level (22.0 vol%~27.0 vol%) and passed UL-94 V0. RPUF-3 with DMPY/SS system loading exhibited the lowest pHRR and THR values of 134.9 kW/m2 and 16.16 MJ/m2, which were 54.5% and 42.7% lower than those of unmodified RPUF, respectively. Additionally, PO· and PO2· free radicals produced by pyrolysis of DMPY could capture high energy free radicals, such as H·, O·, and OH·, produced by degradation of RPUF matrix, effectively blocking the free radical chain reaction of composite materials. The metal oxides in SS reacted with the polymetaphosphoric acid produced by the pyrolysis of DMPY in combustion. It covered the surface of the carbon layer, significantly insulating heat and mass transport in the combustion area, endowing RPUF composites with excellent fire performance. This work not only provides a novel strategy for the fabrication of high-performance RPUF composites, but also elucidates a method of utilizing metallurgical solid waste.
RESUMO
Diterpenoids, including more than 18,000 compounds, represent an important class of metabolites that encompass both phytohormones and some industrially relevant compounds. These molecules with complex, diverse structures and physiological activities, have high value in the pharmaceutical industry. Most medicinal diterpenoids are extracted from plants. Major advances in understanding the biosynthetic pathways of these active compounds are providing unprecedented opportunities for the industrial production of diterpenoids by metabolic engineering and synthetic biology. Here, we summarize recent developments in the field of diterpenoid biosynthesis from medicinal herbs. An overview of the pathways and known biosynthetic enzymes is presented. In particular, we look at the main findings from the past decade and review recent progress in the biosynthesis of different groups of ringed compounds. We also discuss diterpenoid production using synthetic biology and metabolic engineering strategies, and draw on new technologies and discoveries to bring together many components into a useful framework for diterpenoid production.
Assuntos
Diterpenos , Plantas Medicinais , Vias Biossintéticas , Diterpenos/química , Diterpenos/metabolismo , Humanos , Biologia SintéticaRESUMO
With the continuous promotion of electric vehicle applications, the recycling of power battery is urgent. Some batteries, although not suitable for continued use in electric vehicles, can be recycled for echelon utilization or remanufacturing. Thus, this study considers an electric vehicle power battery closed-loop supply chain consisting of a manufacturer and a retailer. We develop three strategies: no production research and development effort strategy, production research and development effort strategy, and government subsidy for production research and development strategy. Optimal pricing and production research and development effort decisions are derived based on Stackelberg game. Results indicate that production research and development positively impact the recycling of waste electric vehicle power batteries, with government subsidy further amplifying this effect by offering higher buyback and recycling prices. Government subsidy encourages manufacturer to increase production research and development effort and lowers the market pricing of electric vehicle power batteries, making these batteries more accessible to consumers. A sizable consumer base can offset the increased costs of production research and development, enabling manufacturer and retailer to achieve greater profitability. Both manufacturer and retailer can benefit from production research and development and government subsidy, ultimately enhancing the profitability of the entire closed-loop supply chain.
RESUMO
Lignocellulose nanofibers (LCNF) obtained from agricultural waste are potential candidates for enhancing composite materials because of their excellent mechanical properties, abundant groups and high biocompatibility. However, the application of LCNF has received limited attention to date from researchers in the healthcare field. Herein, based on the bifunctional group (carboxyl and aldehyde groups) modified LCNF (DCLCNF) and chitosan (CS), we developed a multifunctional bio-based hydrogel (CS-DCLCNF). The addition of lignin-containing DCLCNF strengthened the internal crosslinking and the intermolecular interaction of hydrogels, and the presence of lignin and carboxyl groups increased the mechanical strength of the hydrogel and the adsorption of aromatic drugs. Results revealed that the hydrogels exhibited self-healing, injectable, and high swelling rates. The hydrogels had favorable mechanical strength (G'max of ~16.60 kPa), and the maximum compressive stress was 24 kPa. Moreover, the entire tetracycline hydrochloride (TH) release process was slow and pH-responsive, because of the rich noncovalent and π-π interactions between DCLCNF and TH. The hydrogels also exhibited excellent biocompatibility and antibacterial properties. Notably, the wound healing experiment showed that the hydrogels were beneficial in accelerating wounds healing, which could heal completely in 13 days. Therefore, CS-DCLCNF hydrogels may have promising applications in drug delivery for wound healing.
Assuntos
Quitosana , Nanofibras , Hidrogéis/farmacologia , Lignina/farmacologia , Cicatrização , Antibacterianos/farmacologia , Tetraciclina , Quitosana/farmacologia , Concentração de Íons de HidrogênioRESUMO
In the era of Internet information technology, the IT background of directors plays a significant role in corporate governance. However, existing research lacks sufficient discussion on the financing constraints faced by Internet startups. This paper examines Internet entrepreneurial enterprises listed on the New Third Board as the research sample. Using content analysis coding methods and Python software for text mining, the study empirically analyzes the impact of directors' IT backgrounds and media reports on the financing constraints of these enterprises. The results indicate the following: First, directors with IT backgrounds help reduce the financing constraints of Internet startups. The higher the directors' proficiency in information technology, the more favorable it is for obtaining financing. Second, directors with IT backgrounds have a significant positive impact on the tone of media reports. Third, the tone of media reports reflects the spirit and development of the enterprises, serving as a mediating factor between directors' IT backgrounds and the financing constraints of the enterprises. The findings of this study are valuable for guiding Internet startups to better leverage the IT expertise of their directors. Additionally, they provide useful insights for reducing the financing constraints faced by these startups.
Assuntos
Mineração de Dados , Tecnologia da Informação , Internet , China , Mineração de Dados/métodos , Humanos , Software , Empreendedorismo/economiaRESUMO
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Assuntos
Hidrogéis , Osteogênese , Engenharia Tecidual , Hidrogéis/química , Humanos , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Regeneração Óssea/efeitos dos fármacos , Animais , Microambiente Celular , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proteínas/química , Proteínas/metabolismo , Alicerces Teciduais/química , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacosRESUMO
Background: Immediate implant placement (IIP), which preserves gingival height and papilla shape while simultaneously accelerating the implant treatment period, has become a popular method due to its commendable clinical outcomes. Nonetheless, deploying immediate implants demands specific preconditions concerning the remaining alveolar bone. This poses a challenge to the accuracy of implant surgery. Case presentation: In this report, we present the case of a 60-year-old woman with a left upper anterior tooth crown dislodged for over a month. Cone beam computed tomography (CBCT) revealed the absence of a labial bone wall on tooth 22, a remaining 1 mm bone wall on the labial side of the root apex, and a 17.2 mm*8.9 mm*4.7 mm shadow in the periapical region of the root apices of teeth 21 and 22, with the narrowest width on the sagittal plane being approximately 5 mm. After the surgeon removed the cyst, they completed the subsequent implantation surgery using an autonomous robot in a challenging aesthetic area. This method circumvented the potential exposure of the screw thread on the labial implant surface, assured initial implant stability. Conclusion: Five months after the operation, the dental crown was restored. The implant remained stable, with yielding notable clinical results. To the best of our knowledge, this clinical case is the first to report the feasibility and precision of immediate implantation in anterior teeth site with periapical cyst removal, performed by an autonomous robotic surgical system. Autonomous robots exhibit exceptional accuracy by accurately controlling axial and angular errors. It can improve the accuracy of implant surgery, which may become a key technology for changing implant surgery. However, further clinical trials are still needed to provide a basis for the rapid development of robotic surgery field.
RESUMO
Artemisia argyi is a traditional herbal medicine plant, and its folium artemisia argyi is widely in demand due to moxibustion applications globally. The Auxin/indole-3-acetic acid (Aux/IAA, or IAA) gene family has critical roles in the primary auxin-response process, with extensive involvement in plant development and stresses, controlling various essential traits of plants. However, the systematic investigation of the Aux/IAA gene family in A. argyi remains limited. In this study, a total of 61 Aux/IAA genes were comprehensively identified and characterized. Gene structural analysis indicated that 46 Aux/IAA proteins contain the four typical domains, and 15 Aux/IAA proteins belong to non-canonical IAA proteins. Collinear prediction and phylogenetic relationship analyses suggested that Aux/IAA proteins were grouped into 13 distinct categories, and most Aux/IAA genes might experience gene loss during the tandem duplication process. Promoter cis-element investigation indicated that Aux/IAA promoters contain a variety of plant hormone response and stress response cis-elements. Protein interaction prediction analysis demonstrated that AaIAA26/29/7/34 proteins are possibly core members of the Aux/IAA family interaction. Expression analysis in roots and leaves via RNA-seq data indicated that the expression of some AaIAAs exhibited tissue-specific expression patterns, and some AaIAAs were involved in the regulation of salt and saline-alkali stresses. In addition, RT-qPCR results indicated that AaIAA genes have differential responses to auxin, with complex response patterns in response to other hormones, indicating that Aux/IAA may play a role in connecting auxin and other hormone signaling pathways. Overall, these findings shed more light on AaIAA genes and offer critical foundational knowledge toward the elucidation of their function during plant growth, stress response, and hormone networking of Aux/IAA family genes in A. argyi.
RESUMO
The on-demand regulation of cell wall microstructures is crucial for developing wood as a functional building material for energy management and conversion. Here, a novel strategy based on reactive deep eutectic solvent is developed to one-step in situ fibrillate wood via disrupting the hydrogen bonding networks in cell walls and simultaneously carboxylating wood components, without significantly altering the native hierarchical structures of wood. Benefiting from its distinctive cell wall structure composed of individualized yet well-organized lignocellulose nanofibrils, in situ fibrillated wood exhibits a prominent mesoporous structure with a specific surface area of 81 m2/g. It represents a robust sponge material (5 MPa at 80% strain) with excellent durability. Due to the enhanced compressibility and charge polarization capacity, the in situ fibrillated wood (10 × 11 × 12 mm3) can generate a piezoelectric output voltage of up to 2 V under 221 kPa stress. The favorable microstructural characteristics render in situ fibrillated wood with highly thermal-insulating properties, high solar reflectivity, and mid-infrared emissivity, favoring outdoor passive cooling effects with a subambient temperature drop of 6 °C. Combining its controllable, durable, and eco-friendly attributes, our developed wood sponge represents a versatile structural material suitable for indoor/outdoor energy-saving applications.
RESUMO
Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.
Assuntos
Regeneração Óssea , Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Osteogênese , Impressão Tridimensional , Alicerces Teciduais , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Osteogênese/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Indóis/química , Indóis/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hipertermia Induzida/métodos , Polímeros/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/química , Engenharia Tecidual/métodos , Camundongos , Ratos Sprague-Dawley , Masculino , Ratos , Angiogênese , Glicina/análogos & derivados , IsoquinolinasRESUMO
The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.
Assuntos
Antibacterianos , Biofilmes , NF-kappa B , Nanopartículas , Percepção de Quorum , Cicatrização , Animais , Humanos , Camundongos , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Flavanonas/química , Flavanonas/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Indóis/química , Indóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , NF-kappa B/metabolismo , Polímeros/química , Polímeros/farmacologia , Percepção de Quorum/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológicoRESUMO
Protoberberine alkaloids and benzophenanthridine alkaloids (BZDAs) are subgroups of benzylisoquinoline alkaloids (BIAs), which represent a diverse class of plant-specialized natural metabolites with many pharmacological properties. Microbial biosynthesis has been allowed for accessibility and scalable production of high-value BIAs. Here, we engineer Saccharomyces cerevisiae to de novo produce a series of protoberberines and BZDAs, including palmatine, berberine, chelerythrine, sanguinarine and chelirubine. An ER compartmentalization strategy is developed to improve vacuole protein berberine bridge enzyme (BBE) activity, resulting in >200% increase on the production of the key intermediate (S)-scoulerine. Another promiscuous vacuole protein dihydrobenzophenanthridine oxidase (DBOX) has been identified to catalyze two-electron oxidation on various tetrahydroprotoberberines at N7-C8 position and dihydrobenzophenanthridine alkaloids. Furthermore, cytosolically expressed DBOX can alleviate the limitation on BBE. This study highlights the potential of microbial cell factories for the biosynthesis of a diverse group of BIAs through engineering of heterologous plant enzymes.