RESUMO
Cycloartenyl ferulate (CF) is abundant in brown rice with multiple biologic functions. It has been reported to possess antitumor activity; however, the related mechanism of action of CF has not been clarified. Herein, we unexpectedly uncover the immunological regulation effects of CF and its molecular mechanism. We discovered that CF directly enhanced the killing capacity of natural killer (NK) cells for various cancer cells in vitro. In vivo, CF also improved cancer surveillance in mouse models of lymphoma clearance and metastatic melanoma dependent on NK cells. In addition, CF promoted anticancer efficacy of the anti-PD1 antibody with improvement of tumor immune microenvironment. Mechanistically, we first unveiled that CF acted on the canonical JAK1/2-STAT1 signaling pathway to enhance the immunity of the NK cells by selectively binding to interferon γ receptor 1. Collectively, our results indicate that CF is a promising immunoregulation agent worthy of attention in clinical application in the future. Due to broad biological significance of interferon γ, our findings also provide a capability to understand the diverse functions of CF.
Assuntos
Ácidos Cumáricos , Células Matadoras Naturais , Neoplasias , Receptores de Interferon , Animais , Camundongos , Interferon gama/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Microambiente Tumoral , Ácidos Cumáricos/farmacologia , Receptores de Interferon/imunologia , Receptor de Interferon gamaRESUMO
Wounding stress leads to leaf senescence. However, the underlying molecular mechanism has not been elucidated. In this study, we investigated the role of the MdVQ10-MdWRKY75 module in wound-induced leaf senescence. MdWRKY75 was identified as a key positive modulator of wound-induced leaf senescence by activating the expression of the senescence-associated genes MdSAG12 and MdSAG18. MdVQ10 interacted with MdWRKY75 to enhance MdWRKY75-activated transcription of MdSAG12 and MdSAG18, thereby promoting leaf senescence triggered by wounding. In addition, the calmodulin-like protein MdCML15 promoted MdVQ10-mediated leaf senescence by stimulating the interaction between MdVQ10 and MdWRKY75. Moreover, the jasmonic acid signaling repressors MdJAZ12 and MdJAZ14 antagonized MdVQ10-mediated leaf senescence by weakening the MdVQ10-MdWRKY75 interaction. Our results demonstrate that the MdVQ10-MdWRKY75 module is a key modulator of wound-induced leaf senescence and provides insights into the mechanism of leaf senescence caused by wounding.
Assuntos
Malus , Malus/genética , Senescência Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
An economical one-pot, three-step reaction sequence of readily available 2-monosubstituted 1,3-diketones and 1,4-benzoquinones has been explored for the facile access of 2,3-dialkyl-5-hydroxybenzofurans. By using cheap K2CO3 and conc. HCl as the reaction promoters, the reaction occurs smoothly via sequential Michael addition, aromatization, retro-Claisen, deacylation, hemiketalization, and dehydration processes under mild conditions in a practical manner. Additionally, an interesting phenomenon was observed during the derivatization studies, where the dihydroquinoline was converted into tetrahydroquinoline and quinoline products, respectively, via a disproportionation process.
RESUMO
Light affects many physiological and developmental processes of plants by regulating the expression and activity of light-responsive proteins. Among them, phytochrome interacting factors (PIFs) play pivotal roles in the regulation of anthocyanin accumulation and hypocotyl growth. However, the molecular mechanism is not well understood, especially in woody plants, such as apple (Malus × domestica). In this study, we identified a light-responsive PIF protein, MdPIF7, in apple and investigated the molecular mechanism of its regulation of anthocyanin biosynthesis and hypocotyl growth. We found that overexpression of MdPIF7 decreased anthocyanin accumulation in transgenic apple materials and promoted hypocotyl elongation in ectopically expressed Arabidopsis (Arabidopsis thaliana). Further investigation showed that MdPIF7 functioned by interacting with B-box 23 (MdBBX23), a positive regulator of anthocyanin biosynthesis in apple and hypocotyl growth inhibition in ectopically expressed Arabidopsis, and attenuating the transcriptional activation of MdBBX23 on LONG HYPOCOTYL 5 (MdHY5). In addition, MdPIF7 interacted with basic region leucine zipper 44 (MdbZIP44) and ethylene response factor 38 (MdERF38), two positive regulators of anthocyanin biosynthesis, and it negatively regulated MdbZIP44- and MdERF38-promoted anthocyanin accumulation by interfering with the interaction between MdbZIP44/MdERF38 and MdMYB1. Taken together, our results reveal that MdPIF7 regulates anthocyanin biosynthesis in apple and hypocotyl growth in ectopically expressed Arabidopsis through MdPIF7-MdBBX23-MdHY5 and MdPIF7-MdbZIP44/MdERF38-MdMYB1 modules. Our findings enrich the functional studies of PIF proteins and provide insights into the molecular mechanism of PIF-mediated anthocyanin biosynthesis and hypocotyl growth.
Assuntos
Malus , Fitocromo , Proteínas de Plantas , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo , Malus/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Human papillomaviruse type 16 (HPV16) is a high-risk serotype. As the main protective antigen protein, L1 protein is also the target protein for diagnosis. A simple label free electrochemical immunosensor (ECIS) was fabricated for ultrasensitive detection of HPV16 L1 protein in this work. Quasi-spherical Ag@Au core-shell nanoparticles on graphene oxide (Ag@AuNPs-GO) was developed as current response amplifier and characterized by UV-Vis Spectroscopy, Transmission Electron Microscopy and energy dispersive X-ray spectroscopy. Staphylococcal protein A was decorated on the modified electrode and utilized to immobilized the Fc portion of the monoclonal antibody specific for HPV16 L1 protein. Cyclic Voltammetry, Differential Pulse Voltammetry and Electrochemical Impedance Spectroscopy were used to verify the electrochemical performance and interfacial kinetic property. The increased concentration of HPV16 L1 protein led to slow electron transport and linearly decreased differential pulse voltammetry peak current with a detection limit of 0.002 ng mL-1 and a wide linear relationship in the range of 0.005-400 ng mL-1at a regression coefficient (R2) of 0.9948. Furthermore, this ECIS demonstrated acceptable accuracy with good reproducibility, stability and selectivity, suggesting a promising immunological strategy for HPV typing and early screening.
Assuntos
Alphapapillomavirus , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Humanos , Ouro/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Imunoensaio/métodos , Reprodutibilidade dos Testes , Grafite/química , Técnicas Eletroquímicas/métodos , Limite de DetecçãoRESUMO
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a grave threat to human life and health, it is essential to develop an efficient and sensitive detection method to identify infected individuals. This study described an electrode platform immunosensor to detect SARS-CoV-2-specific spike receptor-binding domain (RBD) protein based on a bare gold electrode modified with Ag-rGO nanocomposites and the biotin-streptavidin interaction system. The Ag-rGO nanocomposites was obtained by chemical synthesis and characterized by electrochemistry and scanning electron microscope (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to record the electrochemical signals in the electrode modification. The differential pulse voltammetry (DPV) results showed that the limit of detection (LOD) of the immunosensor was 7.2 fg mL-1 and the linear dynamic detection range was 0.015 ~ 158.5 pg mL-1. Furthermore, this sensitive immunosensor accurately detected RBD in artificial saliva with favorable stability, specificity, and reproducibility, indicating that it has the potential to be used as a practical method for the detection of SARS-CoV-2.
RESUMO
The nuclear receptors-liver X receptors (LXR α and ß) are potential therapeutic targets in cardiovascular and neurodegenerative diseases because of their key role in the regulation of lipid homeostasis and inflammatory processes. Specific oxy(phyto)sterols differentially modulate the transcriptional activity of LXRs providing opportunities to develop compounds with improved therapeutic characteristics. We isolated oxyphytosterols from Sargassum fusiforme and synthesized sidechain oxidized sterol derivatives. Five 24-oxidized sterols demonstrated a high potency for LXRα/ß activation in luciferase reporter assays and induction of LXR-target genes APOE, ABCA1 and ABCG1 involved in cellular cholesterol turnover in cultured cells: methyl 3ß-hydroxychol-5-en-24-oate (S1), methyl (3ß)-3-aldehydeoxychol-5-en-24-oate (S2), 24-ketocholesterol (S6), (3ß,22E)-3-hydroxycholesta-5,22-dien-24-one (N10) and fucosterol-24,28 epoxide (N12). These compounds induced SREBF1 but not SREBP1c-mediated lipogenic genes such as SCD1, ACACA and FASN in HepG2 cells or astrocytoma cells. Moreover, S2 and S6 enhanced cholesterol efflux from HepG2 cells. All five oxysterols induced production of the endogenous LXR agonists 24(S)-hydroxycholesterol by upregulating the CYP46A1, encoding the enzyme converting cholesterol into 24(S)-hydroxycholesterol; S1 and S6 may also act via the upregulation of desmosterol production. Thus, we identified five novel LXR-activating 24-oxidized sterols with a potential for therapeutic applications in neurodegenerative and cardiovascular diseases.
Assuntos
Doenças Neurodegenerativas , Fitosteróis , Humanos , Receptores X do Fígado , Esteróis/farmacologia , Receptores Nucleares Órfãos/genética , Hidroxicolesteróis , Doenças Neurodegenerativas/tratamento farmacológico , ColesterolRESUMO
Astaxanthin is a natural carotenoid with strong antioxidant activity. In this paper, the effects of carbon source, corn steep liquor, distiller grains, and initial pH on the growth and astaxanthin production of Phaffia rhodozyma D3 were evaluated. The optimal medium composition was 32 g/L glucose, 12 g/L corn steep liquor as nitrogen source, and the initial pH was 6.7. Phaffia rhodozyma D3 was cultured in a shake flask under these optimized conditions, the biomass was 6.47 g/L, the astaxanthin/OD475 was 15.16, and the astaxanthin content was 1.41 mg/g. The astaxanthin content was further increased to 4.70 mg/g by the combination of TiO2 stimulation and the expanding cultivation of P. rhodozyma D3 in a 5 L fermenter, which was 2.81 times that of the control group. Expanding fermentation implies the possibility of large-scale production in the astaxanthin industry. Corn steep liquor was used as an alternative nitrogen source to culture P. rhodozyma D3, which could both reduce the production cost of astaxanthin and increased the by-products utilization rate.
Assuntos
Xantofilas , Zea mays , NitrogênioRESUMO
BACKGROUND: Astaxanthin is a carotenoid with strong antioxidant property. In addition, it has anti-cancer, anti-tumor, anti-inflammatory and many other functions. The micro-organisms that mainly produce astaxanthin are Haematococcus pluvialis and Phaffia rhodozyma. Compared with H. pluvialis, P. rhodozyma has shorter fermentation cycle and easier to control culture conditions, but the yield of astaxanthin in P. rhodozyma is low. This article studied how to improve the astaxanthin production of P. rhodozyma. RESULTS: The results showed that when 10 mL L-1 soybean oil was added to the culture medium, astaxanthin production increased significantly, reaching 7.35 mg L-1 , which was 1.4 times that of the control group, and lycopene and ß-carotene contents also increased significantly. Through targeted metabolite analysis, the fatty acids in P. rhodozyma significantly increased under the soybean oil stimulation, especially the fatty acids closely related to the formation of astaxanthin esters, included palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9), linoleic acid (C18:2n6), α-linolenic acid (C18:3n3) and γ-linolenic acid (C18:3n6), thereby increasing the astaxanthin esters content. CONCLUSION: It showed that the addition of soybean oil can promote the accumulation of astaxanthin by promoting the increase of astaxanthin ester content. © 2022 Society of Chemical Industry.
Assuntos
Basidiomycota , Óleo de Soja , Óleo de Soja/metabolismo , Xantofilas/metabolismo , Basidiomycota/metabolismo , Ácidos Graxos/metabolismoRESUMO
Bacitracin zinc (BAC), a polypeptide antibiotic, is utilized as a feed additive due to its ability to promote growth in animals. However, the abuse of BAC can lead to a great threat to food safety. Therefore, there is an urgent need to develop a rapid and sensitive detection method. In this study, a monoclonal antibody (mAb) against BAC with excellent sensitivity and specificity was obtained. For the first time, quantum dots (QDs) were conjugated with the prepared mAb against BAC and rabbit anti-mouse antibody to fabricate a direct and an indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) to detect BAC. The IC50 of dc-FLISA and ic-FLISA were 0.28 ng/ml and 0.17 ng/ml, respectively. The limits of detection were 0.0016 ng/ml and 0.001 ng/ml, respectively, and the detection ranges were 0.0016-46.50 ng/ml and 0.001-35.65 ng/ml, respectively. In addition, the recovery rate of the two methods ranged from 93.5% to 112.0%, and the coefficient of variation (CV) was less than 10%. Therefore, the methods developed in this work have the merits of low cost, simple operation, and high sensitivity, which provide an effective analytical tool for BAC residue detection in feed samples.
Assuntos
Pontos Quânticos , Animais , Anticorpos Monoclonais/química , Bacitracina , Ensaio de Imunoadsorção Enzimática/métodos , Imunoadsorventes/química , Limite de Detecção , Pontos Quânticos/química , CoelhosRESUMO
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the pathogenic agent leading to COVID-19. Due to high speed of transmission and mutation rates, universal diagnosis and appropriate prevention are still urgently needed. The nucleocapsid protein of SARS-CoV-2 is considered more conserved than spike proteins and is abundant during the virus' life cycle, making it suitable for diagnostic applications. Here, we designed and developed a fluorescent immunochromatography assay (FICA) for the rapid detection of SARS-CoV-2-specific antibodies using ZnCdSe/ZnS QDs-conjugated nucleocapsid (N) proteins as probes. The nucleocapsid protein was expressed in E.coli and purified via Ni-NTA affinity chromatography with considerable concentration (0.762 mg/mL) and a purity of more than 90%, which could bind to specific antibodies and the complex could be captured by Staphylococcal protein A (SPA) with fluorescence displayed. After the optimization of coupling and detecting conditions, the limit of detection was determined to be 1:1.024 × 105 with an IgG concentration of 48.84 ng/mL with good specificity shown to antibodies against other zoonotic coronaviruses and respiratory infection-related viruses (n = 5). The universal fluorescent immunochromatography assay simplified operation processes in one step, which could be used for the point of care detection of SARS-CoV-2-specific antibodies. Moreover, it was also considered as an efficient tool for the serological screening of potential susceptible animals and for monitoring the expansion of virus host ranges.
Assuntos
COVID-19 , Pontos Quânticos , Animais , Anticorpos Antivirais , COVID-19/diagnóstico , Cromatografia de Afinidade , Proteínas do Nucleocapsídeo , SARS-CoV-2 , Sensibilidade e EspecificidadeRESUMO
Interferon regulatory factor 3 (IRF3) is activated by IκB kinase ε (IKKε) and Tank-binding kinase 1 (TBK1), which plays a crucial role in the interferon signaling in vertebrates. However, the regulation of teleost IRF3 by IKKε remains largely unknown. In this study, the IRF3 homologue (bcIRF3) of black carp (Mylopharyngodon piceus) has been cloned and characterized. The transcription of bcIRF3 was detected to increase in host cells in response to different stimuli. bcIRF3 distributed predominantly in the cytosolic area; however, translocated into nuclei after virus infection. bcIRF3 showed IFN-inducing ability in reporter assay and EPC cells expressing bcIRF3 showed enhanced antiviral ability against both grass carp reovirus (GCRV) and spring viremia of carp virus (SVCV). Moreover, knockdown of bcIRF3 reduced the antiviral ability of the host cells, and the transcription of antiviral-related cytokines was obviously lower in bcIRF3-deficient host cells than that of control cells. The data of reporter assay and plaque assay demonstrated that bcIKKε obviously enhanced bcIRF3-mediated IFN production and antiviral activity. Immunofluorescent staining and co-immunoprecipitation assay revealed that bcIKKε interacted with bcIRF3. It was interesting that the nuclear translocation of bcIRF3 and bcIKKε was enhanced by each other when these two molecules were co-expressed in the cells, however, the protein levels of bcIRF3 and bcIKKε were decreased mutually. Thus, our data support the conclusion that bcIKKε interacts with bcIRF3 and enhances bcIRF3-mediated antiviral signaling during host innate immune activation.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Infecções por Rhabdoviridae , Sequência de Aminoácidos , Animais , Antivirais , Carpas/genética , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Quinase I-kappa B/metabolismo , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Infecções por Reoviridae/veterinária , Infecções por Rhabdoviridae/veterináriaRESUMO
Angiogenesis, including the growth of new capillary blood vessels from existing ones and the malignant tumors cells formed vasculogenic mimicry, is quite important for the tumor metastasis. Anti-angiogenesis is one of the significant therapies in tumor treatment, while the clinical angiogenesis inhibitors usually exhibit endothelial cells dysfunction and drug resistance. Bis(2,3,6-tribromo-4,5-dihydroxybenzyl)ether (BTDE), a marine algae-derived bromophenol compound, has shown various biological activities, however, its anti-angiogenesis function remains unknown. The present study illustrated that BTDE had anti-angiogenesis effect in vitro through inhibiting human umbilical vein endothelial cells migration, invasion, tube formation, and the activity of matrix metalloproteinases 9 (MMP9), and in vivo BTDE also blocked intersegmental vessel formation in zebrafish embryos. Moreover, BTDE inhibited the migration, invasion, and vasculogenic mimicry formation of lung cancer cell A549. All these results indicated that BTDE could be used as a potential candidate in anti-angiogenesis for the treatment of cancer.
Assuntos
Inibidores da Angiogênese/farmacologia , Microalgas , Fenóis/farmacologia , Células A549/efeitos dos fármacos , Inibidores da Angiogênese/química , Animais , Organismos Aquáticos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Fenóis/químicaRESUMO
BACKGROUND: Whey protein concentrate (WPC)/pullulan (PUL) hydrogel is applied as a microencapsulation wall material to protect probiotics. However, the interactions between WPC and PUL during gelation have not been clarified. In the present study, the effects of PUL concentration and pH on the interactions between WPC and PUL during gelation were evaluated with respect to appearance, zeta-potential, sulfhydryl group amount, surface hydrophobicity and infrared spectroscopy measurements. The rheological properties of WPC/PUL gels were also determined. RESULTS: The results obtained showed that a proper concentration (0.40 g mL-1 ) of PUL could improve the gel by enhancing the strength of hydrogen bonding, electrostatic interactions and exposure of hydrophobic groups, whereas too much PUL inhibited the formation of disulfide bonds. Furthermore, hydrophobic interactions, disulfide bonds and hydrogen bonds were destroyed in varying degrees under an alkaline environment. The rheological results also demonstrated a similar effect of PUL concentration and pH on the storage modulus (G') of WPC/PUL gels. CONCLUSION: When the WPC/PUL gel was formed at PUL concentration of 0.40 g mL-1 and pH 7.0, the interaction between WPC and PUL could be enhanced, which is beneficial for the future application of WPC/PUL gels in the food industry. © 2020 Society of Chemical Industry.
Assuntos
Glucanos/química , Hidrogéis/química , Proteínas do Soro do Leite/química , Animais , Bovinos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Reologia , Eletricidade EstáticaRESUMO
Two synthetic strategies for a new family of neutral NON ligands featuring a "bis(oxazolinylmethylidene)isobenzofuran" framework (boxman) are reported. A Pd-mediated cyclization reaction forming the isobenzofuran core constitutes the key reaction in the eight-step synthetic route to the nonbackbone-methylated target compound H,Rboxman. In contrast, the introduction of two additional methyl groups provides stereochemical control during backbone construction and thereby access to the methylated derivative Me,Rboxman, which was synthesized in five steps and improved yields. In addition, the synthetic sequence was transferred to the thio analogue, providing access to the NSN ligand H,Rboxmene. Subsequent complexation experiments with iron and cobalt chloride precursors afforded the four-coordinated chlorido complexes Me,RboxmanMCl2 (R = Ph, iPr; M = Fe, Co) and established the boxman family as trans-chelating, bidentate bis(oxazoline) ligands. Application of the latter in the nickel(II)- and zinc(II)-catalyzed α-fluorination of ß-ketoesters and oxindoles (up to 98% yield and 94% ee) demonstrated their suitability for enantioselective catalysis.
RESUMO
Porcine circovirus type 3 (PCV3) is an emerging swine pathogen associated with acute porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs, reproductive failure, and multisystemic inflammation. Current evidence shows that PCV3 is spread worldwide, and its high incidence may pose a threat to the global pig industry. Capsid (Cap) protein is the sole structural protein which plays an important role in inducing protective immunity against PCV3 infection. In this study, monoclonal antibodies (mAbs) against Cap protein of PCV3 were produced by the hybridoma technique. Subsequently, 12 serial overlapping peptides (P1 to P12) spanning the entire region of Cap were synthesized to determine the B cell epitope regions using the mAbs. Results from dot-blot and peptide ELISA identified that P3, P9, and P10 were the major B cell antigenic regions. Fine mapping by shorter N- and C-terminal truncated peptides confirmed that the motifs 57NKPWH61, 140KHSRYFT146, and 161QSLFFF166 were linear B cell epitopes, which were highly conserved among different PCV3 strains. Interestingly, we found that the motif 140KHSRYFT146 was highly conserved in all reported types of PCVs (i.e., PCV1, PCV2, PCV3, and PCV4), except for the substitution (Y â K â R) of the first residue. This is the first research to identify B cell epitopes of PCV3 Cap, and these findings may lead to a better understanding of the antibody-antigen interaction and provide some guidance for PCV3 vaccine design.Key points⢠The recombinant Cap protein of PCV3 was expressed and purified in soluble form. ⢠PCV3 Cap-specific mAbs prepared in this study had no cross-reactivity with PCV1/PCV2 Cap. ⢠This is the first report of three conserved linear B cell epitopes on PCV3 Cap. ⢠The minimal residues of the epitopes were 57-61 aa, 140-146 aa, and 161-166 aa.
Assuntos
Proteínas do Capsídeo/imunologia , Circovirus/imunologia , Epitopos de Linfócito B/imunologia , Motivos de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Linhagem Celular , Infecções por Circoviridae/sangue , Infecções por Circoviridae/veterinária , Circovirus/classificação , Circovirus/isolamento & purificação , Mapeamento de Epitopos , Epitopos de Linfócito B/química , Humanos , Camundongos , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Suínos , Doenças dos Suínos/sangueRESUMO
The core structure of marine natural products aspergiolides A (1a) and B (1b) was achieved via a concise, two-step procedure with satisfactory yield. Based on this protocol, a natural products mimic library containing 25 structural simplified analogues of 1a was then constructed. Several prepared analogues showed potential cytotoxic activity against five different tumor cell lines, and compound 7bb, in particular, exhibited cytotoxicity comparable to that of 1a.
Assuntos
Antraquinonas/química , Células A549 , Antraquinonas/síntese química , Antraquinonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células HeLa , Humanos , Células K562 , Modelos MolecularesRESUMO
Based on the electronic properties of different hybridized oxygen atoms (sp3versus sp2) in the structure of O,O-acetals containing an enol ether moiety, the chemoselective formation of oxocarbenium ions was realized to furnish diversified chiral heterocyclic compounds with excellent stereoselectivities by reacting with different types of nucleophiles. Additionally, an unexpected intramolecular oxocarbenium ion transfer was also reported to form polycyclic products containing the O,O-acetal functional group.
RESUMO
The body wall of starfish is composed of magnesium calcite ossicles connected by collagenous tissue and muscles and it exhibits remarkable variability in stiffness, which is attributed to the mechanical mutability of the collagenous component. Using the common European starfish Asterias rubens as an experimental animal, here we have employed a variety of techniques to gain new insights into the structure of the starfish body wall. The structure and organisation of muscular and collagenous components of the body wall were analysed using trichrome staining. The muscle system comprises interossicular muscles as well as muscle strands that connect ossicles with the circular muscle layer of the coelomic lining. The collagenous tissue surrounding the ossicle network contains collagen fibres that form loop-shaped straps that wrap around calcite struts near to the surface of ossicles. The 3D architecture of the calcareous endoskeleton was visualised for the first time using X-ray microtomography, revealing the shapes and interactions of different ossicle types. Furthermore, analysis of the anatomical organisation of the ossicles indicates how changes in body shape may be achieved by local contraction/relaxation of interossicular muscles. Scanning synchrotron small-angle X-ray diffraction (SAXD) scans of the starfish aboral body wall and ambulacrum were used to study the collagenous tissue component at the fibrillar level. Collagen fibrils in aboral body wall were found to exhibit variable degrees of alignment, with high levels of alignment probably corresponding to regions where collagenous tissue is under tension. Collagen fibrils in the ambulacrum had a uniformly low degree of orientation, attributed to macrocrimp of the fibrils and the presence of slanted as well as horizontal fibrils connecting antimeric ambulacral ossicles. Body wall collagen fibril D-period lengths were similar to previously reported mammalian D-periods, but were significantly different between the aboral and ambulacral samples. The overlap/D-period length ratio within fibrils was higher than reported for mammalian tissues. Collectively, the data reported here provide new insights into the anatomy of the body wall in A. rubens and a foundation for further studies investigating the structural basis of the mechanical properties of echinoderm body wall tissue composites.
Assuntos
Asterias/anatomia & histologia , Animais , Colágeno/análise , Microtomografia por Raio-XRESUMO
We have developed an efficient one-pot, two-step sequential process to synthesize biologically and synthetically important chiral acetal-containing polycyclic derivatives. This novel protocol had been proved to proceed via Michael-lactolization-oxocarbenium ion ring-closing sequence, which was initiated by a key reactive enamine intermediate and interrupted the previously established reaction pathway of two different enones used in this work, and generated the corresponding cycloadducts with excellent stereoselectivity bearing up to seven continuous stereocenters. Both chiral and racemic starting cyclic hemiacetals worked well in this strategy. The synthetic applications of the obtained polycyclic products have also been demonstrated.