Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(49): e2303509, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635118

RESUMO

Persistent luminescence nanoparticles (PLNPs) are innovative materials able to emit light for a long time after the end of their excitation. Thanks to this property, their detection can be separated in time from the excitation, making it possible to obtain images with a high signal-to-noise ratio. This optical property can be of particular interest for the development of in vitro biosensors. Here, we report the unexpected effect of hydrogen peroxide (H2 O2 ) on the signal intensity of ZnGa2 O4 :Cr3+ (ZGO) nanoparticles. In the presence of H2 O2 , the signal intensity of ZGO can be amplified. This signal amplification can be used to detect and quantify H2 O2 in various media, using non-functionalized ZGO nanoparticles. This small molecule can be produced by several oxidases when they react with their substrate. Indeed, the quantification of glucose, lactic acid, and uric acid is possible. The limit of detection could be lowered by modifying the nanoparticles synthesis route. These optimized nanoparticles can also be used as new biosensor to detect larger molecules such as antigen, using the appropriate antibody. This unique property, i.e., persistent luminescence signal enhancement induced by H2 O2 , represents a new way to detect biomolecules which could lead to a very large number of bioassay applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Luminescência , Nanopartículas/química , Técnicas Biossensoriais/métodos
2.
J Environ Sci (China) ; 106: 182-193, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34210434

RESUMO

In this study, ammonia emissions characteristics of typical light-duty gasoline vehicles were obtained through laboratory vehicle bench test and combined with New European Driving Cycle (NEDC) condition and Worldwide Harmonized Light Vehicles Test Cycle (WLTC) condition. The influence of ambient temperature on ammonia emissions is mainly concentrated in the cold start stage. The influence of ambient temperature on ammonia emission is shown that the ammonia emissions of light-duty gasoline vehicles under ambient temperature conditions (14 and 23°C) are lower than those under low ambient temperature conditions (-7°C) and high ambient temperature conditions (35 and 40°C). The influence of TWC on ammonia emission is shown that ammonia is a by-product of the catalytic reduction reaction of conventional gas pollutants in the exhaust gas in the TWC. Under NEDC operating conditions and WLTC operating conditions, ammonia emissions after the catalyst are 45 times and 72 times that before the catalyst, respectively. In terms of ammonia emissions control strategy research, Pd/Rh combination can reduce NH3 formation more effectively than catalyst with a single Pd formula. Precise control of the engine's air-fuel ratio and combination with the optimized matched precious metal ratio TWC can effectively reduce ammonia emissions.


Assuntos
Poluentes Atmosféricos , Condução de Veículo , Poluentes Atmosféricos/análise , Amônia/análise , Gasolina/análise , Veículos Automotores , Emissões de Veículos/análise
3.
Anal Biochem ; 601: 113780, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32470346

RESUMO

In this work, we report a novel cell surface glycan analysis method based on persistent luminescence nanoparticle (PLNP) ZnGa2O4: Cr3+ (ZGC) as an optical probe. ZGC was first silanized by (3-Aminopropyl) triethoxysilane (APTES), followed by PEGylation with NHS-P EG-Biotin, which not only introduces biotin, but significantly improves the dispersibility and stability of the nanoparticles. Neutral-avidin was then coupled on ZGC surface through the specific biotin-avidin interaction, producing a ZGC-PEG-avidin nanoprobe. As for cell surface glycan detection, different surface glycans are recognized with their corresponding biotinylated lectins, which are then traced by ZGC-PEG-avidin. The persistent luminescence signal is recorded by a microtiter plate reader in time-resolved fluorescence mode. Glycans expression profiling on prostate cancer cell DU145 and normal prostate cell RWPE-1 was analyzed by the proposed detection platform. Similar results were observed from the conventional horseradish peroxidase (HRP)-catalyzed absorbent assay and confocal microscope-based fluorescence imaging, demonstrating the applicability of the proposed platform. The approach based on the long afterglow property of ZGC efficiently eliminates the background noise from cells and substrate, resulting in the best signal-to-noise ratio and high detection sensitivity.


Assuntos
Luminescência , Substâncias Luminescentes/química , Nanopartículas/química , Imagem Óptica , Polissacarídeos/análise , Células Cultivadas , Humanos
4.
Anal Biochem ; 577: 82-88, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029675

RESUMO

Biothiols play critical roles in many biological processes and their aberrant is related to a variety of syndromes. A simple and reliable colorimetric method is developed in this work for biothiols detection based on an oxidase mimic, a metal organic framework (MOF) MIL-53(Fe), and a peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB). In this design, MIL-53(Fe) is utilized to catalyze the conversion of TMB to a blue colored 3,3',5,5'-tetramethylbenzidine diimine, which can be read on a spectrophotometer at 652 nm. The oxidation-induced blue color generation can be efficiently inhibited by biothiols, thus a colorimetric analytical method is proposed for biothiols detection based on the above system. Under optimal conditions, a linear relationship in a range from 1 to 100 µM and a limit of detection (LOD) at 120 nM are achieved with Cys as a model target. The developed platform is further applied to evaluate cellular biothiols in normal (RWPE-1) and cancer (LNCap) cell lines, revealing that the overall biothiols level in LNCap is much higher than that in RWPE-1. This work renders a powerful tool for identifying cancer cells in a simple manner for biomedical diagnosis associated with biothiols.


Assuntos
Cisteína/análise , Glutationa/análise , Homocisteína/análise , Benzidinas/química , Linhagem Celular , Colorimetria/métodos , Humanos , Estruturas Metalorgânicas/química
5.
Anal Bioanal Chem ; 411(24): 6419-6426, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31392437

RESUMO

Amine-functionalized silicon nanoparticles (A-SiNPs) with intense green fluorescence and photostability are synthesized via a one-step, low-cost hydrothermal method under mild conditions using 3-aminopropyl triethoxysilane (APTES) as a silicon source and L-ascorbic acid (AA) as a reducing reagent. The amine-rich surface not only improves water dispersability and stability of the A-SiNPs but also offers a specific copper(II) ion (Cu2+) coordination capability. The as-prepared A-SiNPs can be directly employed for Cu2+ detection in "turn-off" mode, resulting from Cu2+ coordination-induced fluorescence quenching effect. Under optimal conditions, Cu2+ detection was accomplished with a linear range from 1 to 500 µM and a limit of detection (LOD) at 0.1 µM, which was much lower than the maximum level (~ 20 µM) of Cu2+ in drinking water permitted by the US Environmental Protection Agency (EPA). In addition, the A-SiNPs were successfully used to detect Cu2+ in spiked river water, demonstrating its good selectivity and potential application for analysis of surface water samples. Graphical abstract.

6.
Anal Biochem ; 558: 53-59, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30086259

RESUMO

Although a variety of approaches have been developed to analyze protein O-GlcNAcylation, efficient investigations on O-GlcNAcylation of proteins of interest in high-throughput manner are still in high demand to further explore its functionality. In this work, we first develop a powerful microarray platform for a sensitive, specific and high-throughput analysis of protein O-GlcNAcylation. The developed array biochip is then utilized to parallelly analyze the O-GlcNAcylation of three oncogenic transcription factors C-Myc, NF-κB and p53 in normal prostate epithelial cell (RWPE-1) and prostate cancer cell line (PC-3). The levels of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) are also monitored by the microarray platform. The experimental results show that the overall O-GlcNAcylation and OGT expression level are obviously elevated in PC-3 as compared to RWPE-1. The protein expression-normalized O-GlcNAcylation of C-Myc and NF-κB in PC-3 is significantly higher than that in RWPE-1, while opposite result is observed from p53. In addition, the biological behaviors including proliferation and migration of PC-3 cells are also studied when OGA inhibitor Thiamet G is applied to elevate the total O-GlcNAcylation level.


Assuntos
Dispositivos Lab-On-A-Chip , N-Acetilglucosaminiltransferases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/metabolismo , Acilação , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/metabolismo
7.
Analyst ; 143(12): 2901-2907, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29808208

RESUMO

A high-resolution colorimetric immunoassay platform has been developed based on enzyme-catalyzed multicolor generation and smartphone-assisted signal readout. The multi-color generation is accomplished in this system through the urease-catalyzed urea hydrolysis-induced color change of the pH indicator phenol red, from yellow to orange to red over pH 6.6 to 8.0. The color change is easily tailored by controlling the urease activity via the inhibitor silver ion (Ag+), the amount of which is in turn adjusted by alkaline phosphatase (ALP)-catalyzed ascorbic acid (AA) production. An ALP-linked colorimetric immunoassay is readily realized based on the above urease catalyzed multicolor generation system. Under optimal conditions, a limit of detection (LOD) of 1.73 ng mL-1 and a dynamic range from 0 to 18 ng mL-1 are achieved with rabbit IgG as a model analyte. A colored picture for each test is directly taken using a smartphone and then quantitatively analyzed with the free software ImageJ, eliminating the use of expensive and desktop equipment. The dose-dependent multicolor display is easier to distinguish with the naked eye for qualitative or semiquantitative detection over the traditional one-color system. The developed immunoassay scheme provides a promising platform for on-site testing or applications in resource-poor areas.


Assuntos
Colorimetria , Imunoensaio , Smartphone , Fosfatase Alcalina/química , Animais , Ácido Ascórbico/química , Limite de Detecção , Coelhos , Prata , Ureia/química , Urease/química
8.
Mikrochim Acta ; 185(2): 140, 2018 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-29594540

RESUMO

FePO4 is biocompatible and can act as a kind of promising enzyme mimetic. Unfortunately, the electrical conductivity of FePO4 is poor. In order to enhance its conductivity, FePO4 was embedded into nanofibers consisting of amorphous carbon and reduced graphene oxide (rGO) by an electrospinning technique. As a sensing material for monitoring superoxide anion (O2•-) and typically operated at 0.5 V (vs. SCE), it displays high sensitivity (9.6 µA⋅µM-1⋅cm-2), a low detection limit (9.7 nM at S/N = 3), a wide linear response range (10 nM to 10 µM), and fast response (1.6 s). Due to its low detection limit and fast response, the sensor in our perception has a large potential for detecting superoxide anions released by HeLa cancer cells. Graphical abstract Schematic of the microstructure of FePO4/C and FePO4/rGO-C nanofibers, a photograph of cancer cells (HeLa), and the electrochemical response towards O2-• of the sensor.


Assuntos
Materiais Biomiméticos/química , Compostos Férricos/química , Grafite/química , Nanofibras/química , Superóxidos/química , Superóxidos/metabolismo , Sobrevivência Celular , Condutividade Elétrica , Eletroquímica , Células HeLa , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Limite de Detecção , Oxirredução
9.
J Environ Sci (China) ; 65: 83-91, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29548415

RESUMO

Maritime transport has been playing a decisive role in global trade. Its contribution to the air pollution of the sea and coastal areas has been widely recognized. The air pollutant emission inventories of several harbors in China have already been established. However, the emission factors of local ships have not been addressed comprehensively, and thus are lacking from the emission inventories. In this study, on-board emission tests of eight diesel-powered offshore fishing ships were conducted near the coastal region of the northern Yellow Bo Sea fishing ground of Dalian, China. Results show that large amounts of fine particles (<0.5µm, 90%) were found in maneuvering mode, which were about five times higher than those during cruise mode. Emission rates as well as emission factors based on both distance and fuel were determined during the cruise and maneuvering modes (including departure and arrival). Average emission rates and distance-based emission factors of CO, HC and PM were much higher during the maneuvering mode as compared with the cruise mode. However, the average emission rate of Nitrous Oxide (NOx) was higher during the cruise mode as compared with the maneuvering modes. On the contrary, the average distance-based emission factors of NOx were lower during the cruise mode relative to the maneuvering mode due to the low sailing speed of the latter.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Navios/estatística & dados numéricos , Emissões de Veículos/análise , Poluição do Ar/estatística & dados numéricos , China
10.
Colloids Surf B Biointerfaces ; 240: 113981, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815310

RESUMO

Reactive oxygen species (ROS)-driven chemodynamic therapy has emerged as a promising anti-tumor strategy. However, the insufficient hydrogen peroxide (H2O2) supply in tumor microenvironment results in a low Fenton reaction rate and subsequently poor ROS production and therapeutic efficacy. Herein, we report on a new nanocomposite MIL-53@ZIF-67/S loaded with doxorubicin and glucose oxidase, which is decomposed under the acidic tumor microenvironment to release Fe3+, Co3+, glucose oxidase, and doxorubicin. The released content leads to synergistic anti-tumor effect through the following manners: 1) doxorubicin is directly used for chemotherapy; 2) Fe3+and Co3+ result in glutathione depletion and Fenton reaction activation through Fe2+ and Co2+ generation to achieve chemodynamic therapy; 3) glucose oxidase continuously catalyzes glucose consumption to induce starvation of the cancer cells, and 4) at the same time the produced gluconic acid and H2O2 significantly promote Fenton reaction and further boost chemodynamic therapy. This work not only demonstrates the high anti-tumor effect of the new nanocomposite, but also provides an innovative strategy for the development of a multi-in-one nanoplatform for cancer therapy.


Assuntos
Cobalto , Doxorrubicina , Ferro , Estruturas Metalorgânicas , Nanocompostos , Nanocompostos/química , Cobalto/química , Cobalto/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/síntese química , Ferro/química , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Catálise , Animais , Camundongos , Peróxido de Hidrogênio/química , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Propriedades de Superfície , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais
11.
Acta Biomater ; 183: 330-340, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838909

RESUMO

Although vaccination with inactivated vaccines is a popular preventive method against pseudorabies virus (PRV) infection, inactivated vaccines have poor protection efficiency because of their weak immunogenicity. The development of an effective adjuvant is urgently needed to improve the efficacy of inactivated PRV vaccines. In this study, a promising nanocomposite adjuvant named as MIL@A-SW01-C was developed by combining polyacrylic acid-coated metal-organic framework MIL-53(Al) (MIL@A) and squalene (oil)-in-water emulsion (SW01) and then mixing it with a carbomer solution. One part of the MIL@A was loaded onto the oil/water interface of SW01 emulsion via hydrophobic interaction and coordination, while another part was dispersed in the continuous water phase using carbomer. MIL@A-SW01-C showed good biocompatibility, high PRV (antigen)-loading capability, and sustained antigen release. Furthermore, the MIL@A-SW01-C adjuvanted PRV vaccine induced high specific serum antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response compared with commercial adjuvants, such as alum and biphasic 201. In the mouse challenge experiment, two- and one-shot vaccinations resulted in survival rates of 73.3 % and 86.7 %, respectively. After one-shot vaccination, the host animal pigs were also challenged with wild PRV. A protection rate of 100 % was achieved, which was much higher than that observed with commercial adjuvants. This study not only establishes the superiority of MIL@A-SW01-C composite nanoadjuvant for inactivated PRV vaccine in mice and pigs but also presents an effective method for developing promising nanoadjuvants. STATEMENT OF SIGNIFICANCE: We have developed a nanocomposite of MIL-53(Al) and oil-in-water emulsion (MIL@A-SW01-C) as a promising adjuvant for the inactivated PRV vaccines. MIL@A-SW01-C has good biocompatibility, high PRV (antigen) loading capability, and prolonged antigen release. The developed nanoadjuvant induced much higher specific IgG antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response than commercial adjuvants alum and biphasic 201. In mouse challenge experiments, survival rates of 73.3 % and 86.7 % were achieved from two-shot and one-shot vaccinations, respectively. At the same time, a protection rate of 100 % was achieved with the host animal pigs challenged with wild PRV.


Assuntos
Adjuvantes Imunológicos , Emulsões , Animais , Adjuvantes Imunológicos/farmacologia , Emulsões/química , Camundongos , Suínos , Herpesvirus Suídeo 1/imunologia , Vacinas contra Pseudorraiva/imunologia , Camundongos Endogâmicos BALB C , Óleos/química , Feminino , Água/química , Vacinas de Produtos Inativados/imunologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citocinas/metabolismo
12.
Int J Biol Macromol ; 269(Pt 2): 132172, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719009

RESUMO

Adjuvants including aluminum adjuvant (Alum) and oil-water emulsion have been widely used in inactivated pseudorabies virus (PRV) vaccines to improve their performance, however, they are not sufficient to protect from PRV infection because of the weak immune response and poor Th1-type immune response. Divalent manganese ion (Mn2+) has been reported to increase the cellular immune response significantly. In this work, a xanthan gum and carbomer-dispersed Mn2+-loaded tannic acid-polyethylene glycol (TPMnXC) nanoparticle colloid is developed and used as an adjuvant to improve the performance of the inactivated PRV vaccine. The good in vitro and in vivo biocompatibility of the developed TPMnXC colloid has been confirmed by the cell viability assay, erythrocyte hemolysis, blood routine analysis, and histological analysis of mouse organs and injection site. The TPMnXC-adjuvanted inactivated PRV vaccine (TPMnXC@PRV) significantly promotes higher and more balanced immune responses indicating with an increased specific total IgG antibody and IgG2a/IgG1 ratio, efficient splenocytes proliferation, and elevated Th1- and Th2-type cytokine secretion than those of control groups. Wild PRV challenge experiment is performed using mice as a model animal, achieving a protection rate of up to 86.67 %, which is much higher than those observed from the commercial Alum. This work not only demonstrates the high potentiality of TPMnXC in practical applications but also provides a new way to develop the Mn2+-loaded nanoadjuvant for veterinary vaccines.


Assuntos
Adjuvantes Imunológicos , Herpesvirus Suídeo 1 , Imunidade Celular , Imunidade Humoral , Manganês , Nanopartículas , Polissacarídeos Bacterianos , Taninos , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Nanopartículas/química , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Taninos/química , Taninos/farmacologia , Manganês/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/imunologia , Herpesvirus Suídeo 1/imunologia , Vacinas contra Pseudorraiva/imunologia , Vacinas de Produtos Inativados/imunologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Feminino , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Polifenóis
13.
Nanotechnology ; 24(17): 175501, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23558511

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) (about 15 nm) were synthesized via a hydrothermal method and characterized by field emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering, x-ray diffraction, and vibrating sample magnetometer. The molecular pathways of SPIONs-induced nanotoxicity was further investigated by protein microarrays on a plastic substrate from evaluation of cell viability, reactive oxygen species (ROS) generation and cell apoptosis. The experimental results reveal that 50 µg ml(-1) or higher levels of SPIONs cause significant loss of cell viability, considerable generation of ROS and cell apoptosis. It is proposed that high level SPIONs could induce cell apoptosis via a mitochondria-mediated intrinsic pathway by activation of caspase 9 and caspase 3, an increase of the Bax/Bcl-2 ratio, and down-regulation of HSP70 and HSP90 survivor factors.


Assuntos
Nanopartículas de Magnetita/toxicidade , Análise Serial de Proteínas , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Nanopartículas de Magnetita/ultraestrutura , Células PC12 , Análise Serial de Proteínas/métodos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
14.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4189-4203, 2023 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-37877399

RESUMO

Silver nanoparticles (AgNPs) is known as one of the most valuable metal nanoparticles in antibacterial and anticancer application. AgNPs-resistant bacteria has been documented, but it is unclear whether cancer cells can also escape the anti-cancer effect of AgNPs. In this study, we aimed to investigate this phenomenon and its underlying mechanism. The antibacterial activity and cytotoxicity of AgNPs were measured in the presence of HeLa cell metabolites. The status of AgNPs in the system associated with metabolites were characterized by UV-Vis, Zetasizer Nano ZS, and transmission electron microscopy. Non-targeted metabolomics was used to reveal the metabolites components that bind with AgNPs. HeLa cells were injected intraperitoneally to establish the tumor-bearing mice model, and the stability of AgNPs in mice serum was analyzed. The results manifested that HeLa cell metabolites inhibited the anticancer and antibacterial effects of AgNPs in a dose-dependent manner by causing AgNPs aggregation. Effective metabolites that inhibited the biological activity of AgNPs were stable in 100 ℃, insoluble in chloroform, containing sulfur elements, and had a molecular weight less than 1 kDa in molecular weight. There were 115 compounds bound with AgNPs. In vitro experiments showed that AgNPs aggregation occurred only when the concentration of α-ketoglutarate (AKG) and glutathione (GSH) together reached a certain threshold. Interestingly, the concentration of AKG and GSH in HeLa cellular metabolites was 10 and 6 times higher than that in normal cervical epithelial cells, respectively, which explained why the threshold was reached. Furthermore, the stability of AgNPs in the serum of tumor-bearing mice decreased by 20% (P < 0.05) compared with the healthy mice. In conclusion, our study demonstrates that HeLa cells escaped the anti-cancer effect of AgNPs through the synergistic effect of AKG and GSH, suggesting the need to develop strategies to overcome this limitation.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Animais , Camundongos , Células HeLa , Prata/farmacologia , Ácidos Cetoglutáricos/farmacologia , Antibacterianos/farmacologia , Glutationa , Testes de Sensibilidade Microbiana
15.
Acta Biomater ; 168: 540-550, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393970

RESUMO

Although inactivated vaccines have higher safety than live-attenuated vaccines in the control of pseudorabies virus (PRV), their protection efficacy is limited due to insufficient immunogenicity when used alone. High-performance adjuvants that can potentiate immune responses are highly desirable to improve the protection efficacy of inactivated vaccines. In this work, we have developed U@PAA-Car, a Carbopol dispersed zirconium-based metal-organic framework UIO-66 modified by polyacrylic acid (PAA), as a promising adjuvant for inactivated PRV vaccines. The U@PAA-Car has good biocompatibility, high colloidal stability, and antigen (vaccine) loading capacity. It significantly potentiates humoral and cellular immune responses over either U@PAA, Carbopol, or commercial adjuvants such as Alum and biphasic 201 by inducing a higher specific antibody titer, IgG2a/IgG1 ratio, cell cytokine secretion, and splenocyte proliferation. A protection rate of over 90% was observed in challenge tests in the model animal mice and the host animal pigs, which is much higher than that observed with commercial adjuvants. The high performance of the U@PAA-Car is attributed to antigen sustainable release at the injection site and highly efficient antigen internalization and presentation. In conclusion, this work not only demonstrates a great potential of the developed U@PAA-Car nano-adjuvant for the inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism. STATEMENT OF SIGNIFICANCE: We have developed a Carbopol dispersed PAA-modified zirconium-based metal-organic framework UIO-66 (U@PAA-Car) as a promising combination nano-adjuvant for the inactivated PRV vaccine. The U@PAA-Car induced higher specific antibody titers and IgG2a/IgG1 ratio, increased cell cytokines secretion, and better splenocyte proliferation than U@PAA, Carbopol, and the commercial adjuvants Alum and biphasic 201, indicating that it induces a significant potentiation of humoral and cellular immune response. In addition, much higher protection rates were achieved with the U@PAA-Car-adjuvanted PRV vaccine in mice and pigs challenge than those observed from the commercial adjuvant groups. This work not only demonstrates the great potential of the U@PAA-Car nano-adjuvant in an inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism.


Assuntos
Herpesvirus Suídeo 1 , Estruturas Metalorgânicas , Pseudorraiva , Animais , Suínos , Camundongos , Pseudorraiva/prevenção & controle , Zircônio/farmacologia , Adjuvantes Imunológicos/farmacologia , Imunidade Celular , Citocinas , Imunoglobulina G , Vacinas de Produtos Inativados
16.
J Colloid Interface Sci ; 641: 961-971, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36989822

RESUMO

Lanthanide (Ln3+) luminescent materials play a crucial role in information security and data storage owing to their excellent and unique optical properties. The advances in dynamic colorful luminescent anti-counterfeiting nanomaterials enable the generation of a high-level information encryption. In this work, a superior thermal, optical wavelength and excitation power triple-mode stimuli-responsive emission color modulation is demonstrated in a lanthanide-doped nanostructured luminescent material. The plentiful emission colors are manipulated by modulating the composition of a fluoride core-shell nanostructure with different Ln3+ at different doping concentrations. The nanomaterials display remarkable excitation wavelength/power-dependent color change, along with temperature-dependent color variation in the range from 298 K to 437 K, with a good relative sensitivity Sr of 1.1387% K-1 at 398 K. The universal optical modulation, combined with the excellent optical and structural stability of the luminescent nanoparticles, renders many advantages for the anti-counterfeiting application. This work explores a universal strategy for the manipulation of triple-mode stimuli-responsive dynamic luminescence and demonstrates its good potential for anti-counterfeiting application.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35349060

RESUMO

This paper presents an energy consumption evaluation method for electric vehicles under different cooling and heating conditions. First, using the actual driving test data of electric vehicles, the weight coefficient of the energy consumption value per 100 km of the electric vehicle undercooling, heating, and non-cooling heating is obtained by the least-square method in the comprehensive energy consumption value of the electric vehicle per 100 km throughout the year. Then, the above weight coefficients are combined with the test results of the bench test to obtain the comprehensive energy consumption per 100 km of the electric vehicle in the whole year. The relevant vehicles are tested, and the simulation and experimental results show that the obtained weight coefficients of the least-squares method can better reflect the real energy consumption of the entire vehicle, and the energy consumption of 100 km is an evaluation method for electric vehicles. A feasible evaluation method is proposed in this paper.

19.
Nanomaterials (Basel) ; 12(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144911

RESUMO

This work presents a highly secure anticounterfeiting strategy based on upconversion/afterglow hybrids with tricolor emissions tuned by a single 975 nm laser. The hybrids are composed of NaYF4:Yb/Tm and NaYF4:Yb/Er microrods and CaS:Eu2+ afterglow phosphors. Under 975 nm excitation, the hybrids exhibit multicolor emissions from green to white by adjusting laser power and then emit red afterglow light when the 975 nm laser is off. Under synergistic excitation of the blue-green light emitted by Tm/Er microrods, the red afterglow emission not only has a strong initial intensity but also lasts for 3 s. Obvious trichromatic changes from green to white to red can be observed by the naked eye. A pattern printed by the hybrid ink exhibits tricolor emissions by laser adjustment and switch. This proves that upconversion/afterglow hybrids are an excellent candidate for anticounterfeiting applications with high-level security but a simple recognition method.

20.
J Mater Chem B ; 10(39): 8082-8093, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36128978

RESUMO

Chemodynamic therapy has become an emerging cancer treatment strategy, in which tumor cells are killed through toxic reactive oxygen species (ROS), especially hydroxyl radicals (˙OH) produced by the Fenton reaction. Nevertheless, low ROS generation efficiency and ROS depletion by cellular antioxidant systems are still the main obstacles in chemodynamic therapy. In the present work, we propose a dually enhanced chemodynamic therapy obtained by inhibiting ˙OH consumption and promoting ˙OH production based on the administration of bimetallic sulfide Co3-xCuxS4 nanoparticles functionalized by polyethylene glycol. These bimetallic nanoparticles display glutathione depleting and photothermal properties. The nanoparticles are gradually degraded in a tumor microenvironment, resulting in Co2+ and Cu2+ release. The released Co2+ triggers a Fenton-like reaction that turns endogenous hydrogen peroxide into highly toxic ˙OH. In the cellular environment, Cu2+ ions are reduced to Cu+ by endogenous GSH, which decreases the intracellular antioxidant capacity and additionally up-regulates ˙OH production via the Cu+-induced Fenton-like reaction. Moreover, under near-infrared light irradiation, the bimetallic nanoparticles display a photothermal conversion efficacy of 46.7%, which not only improves chemodynamic therapy via boosting a Fenton-like reaction but results in photothermal therapy through hyperthermia. Both in vitro cancer cell killing and in vivo tumor ablation experiments show that the bimetallic nanoparticles display outstanding therapeutic efficacy and negligible systemic toxicity, indicating their anticancer potential.


Assuntos
Hipertermia Induzida , Neoplasias , Antioxidantes , Cobre/farmacologia , Cobre/uso terapêutico , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Polietilenoglicóis , Espécies Reativas de Oxigênio , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA