Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(4): 931-942.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571431

RESUMO

The D1- and D2-dopamine receptors (D1R and D2R), which signal through Gs and Gi, respectively, represent the principal stimulatory and inhibitory dopamine receptors in the central nervous system. D1R and D2R also represent the main therapeutic targets for Parkinson's disease, schizophrenia, and many other neuropsychiatric disorders, and insight into their signaling is essential for understanding both therapeutic and side effects of dopaminergic drugs. Here, we report four cryoelectron microscopy (cryo-EM) structures of D1R-Gs and D2R-Gi signaling complexes with selective and non-selective dopamine agonists, including two currently used anti-Parkinson's disease drugs, apomorphine and bromocriptine. These structures, together with mutagenesis studies, reveal the conserved binding mode of dopamine agonists, the unique pocket topology underlying ligand selectivity, the conformational changes in receptor activation, and potential structural determinants for G protein-coupling selectivity. These results provide both a molecular understanding of dopamine signaling and multiple structural templates for drug design targeting the dopaminergic system.


Assuntos
Receptores de Dopamina D1/química , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Sequência de Aminoácidos , Sequência Conservada , Microscopia Crioeletrônica , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Dopamina D1/ultraestrutura , Receptores de Dopamina D2/ultraestrutura , Homologia Estrutural de Proteína
2.
Nature ; 628(8008): 664-671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600377

RESUMO

Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.


Assuntos
Colesterol , Espaço Intracelular , Receptores Acoplados a Proteínas G , Paladar , Humanos , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacologia , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Reprodutibilidade dos Testes , Paladar/efeitos dos fármacos , Paladar/fisiologia , Transducina/química , Transducina/metabolismo , Transducina/ultraestrutura
3.
Mol Cell ; 81(6): 1147-1159.e4, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33548201

RESUMO

The dopamine system, including five dopamine receptors (D1R-D5R), plays essential roles in the central nervous system (CNS), and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders. Here, we report two cryo-EM structures of human D3R in complex with an inhibitory G protein and bound to the D3R-selective agonists PD128907 and pramipexole, the latter of which is used to treat patients with Parkinson's disease. The structures reveal agonist binding modes distinct from the antagonist-bound D3R structure and conformational signatures for ligand-induced receptor activation. Mutagenesis and homology modeling illuminate determinants of ligand specificity across dopamine receptors and the mechanisms for Gi protein coupling. Collectively our work reveals the basis of agonist binding and ligand-induced receptor activation and provides structural templates for designing specific ligands to treat CNS diseases targeting the dopaminergic system.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Complexos Multiproteicos/ultraestrutura , Receptores de Dopamina D3/química , Benzopiranos/química , Células HEK293 , Humanos , Complexos Multiproteicos/química , Oxazinas/química , Pramipexol/química , Domínios Proteicos , Relação Estrutura-Atividade
4.
EMBO J ; 43(13): 2759-2788, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769438

RESUMO

Energy stress, characterized by the reduction of intracellular ATP, has been implicated in various diseases, including cancer. Here, we show that energy stress promotes the formation of P-bodies in a ubiquitin-dependent manner. Upon ATP depletion, the E3 ubiquitin ligase TRIM23 catalyzes lysine-63 (K63)-linked polyubiquitination of HCLS1-associated protein X-1 (HAX1). HAX1 ubiquitination triggers its liquid‒liquid phase separation (LLPS) and contributes to P-bodies assembly induced by energy stress. Ubiquitinated HAX1 also interacts with the essential P-body proteins, DDX6 and LSM14A, promoting their condensation. Moreover, we find that this TRIM23/HAX1 pathway is critical for the inhibition of global protein synthesis under energy stress conditions. Furthermore, high HAX1 ubiquitination, and increased cytoplasmic localization of TRIM23 along with elevated HAX1 levels, promotes colorectal cancer (CRC)-cell proliferation and correlates with poor prognosis in CRC patients. Our data not only elucidate a ubiquitination-dependent LLPS mechanism in RNP granules induced by energy stress but also propose a promising target for CRC therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Lisina , Ubiquitinação , Humanos , Lisina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estresse Fisiológico , Células HEK293 , Proliferação de Células , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação ao GTP
5.
Nature ; 612(7939): 354-362, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450989

RESUMO

Designer receptors exclusively activated by designer drugs (DREADDs) represent a powerful chemogenetic technology for the remote control of neuronal activity and cellular signalling1-4. The muscarinic receptor-based DREADDs are the most widely used chemogenetic tools in neuroscience research. The Gq-coupled DREADD (hM3Dq) is used to enhance neuronal activity, whereas the Gi/o-coupled DREADD (hM4Di) is utilized to inhibit neuronal activity5. Here we report four DREADD-related cryogenic electron microscopy high-resolution structures: a hM3Dq-miniGq complex and a hM4Di-miniGo complex bound to deschloroclozapine; a hM3Dq-miniGq complex bound to clozapine-N-oxide; and a hM3R-miniGq complex bound to iperoxo. Complemented with mutagenesis, functional and computational simulation data, our structures reveal key details of the recognition of DREADD chemogenetic actuators and the molecular basis for activation. These findings should accelerate the structure-guided discovery of next-generation chemogenetic tools.


Assuntos
Neurociências
6.
Nature ; 601(7893): 452-459, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912117

RESUMO

Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1-4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach-V-SYNTHES-to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold-synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50-200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm.


Assuntos
Algoritmos , Técnicas de Química Combinatória , Descoberta de Drogas , Bibliotecas Digitais , Ligantes , Simulação de Acoplamento Molecular , Quinases Associadas a rho
7.
EMBO J ; 42(11): e112940, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37038975

RESUMO

The peptide hormone angiotensin II regulates blood pressure mainly through the type 1 angiotensin II receptor AT1 R and its downstream signaling proteins Gq and ß-arrestin. AT1 R blockers, clinically used as antihypertensive drugs, inhibit both signaling pathways, whereas AT1 R ß-arrestin-biased agonists have shown great potential for the treatment of acute heart failure. Here, we present a cryo-electron microscopy (cryo-EM) structure of the human AT1 R in complex with a balanced agonist, Sar1 -AngII, and Gq protein at 2.9 Å resolution. This structure, together with extensive functional assays and computational modeling, reveals the molecular mechanisms for AT1 R signaling modulation and suggests that a major hydrogen bond network (MHN) inside the receptor serves as a key regulator of AT1 R signal transduction from the ligand-binding pocket to both Gq and ß-arrestin pathways. Specifically, we found that the MHN mutations N1113.35 A and N2947.45 A induce biased signaling to Gq and ß-arrestin, respectively. These insights should facilitate AT1 R structure-based drug discovery for the treatment of cardiovascular diseases.


Assuntos
Angiotensina II , Transdução de Sinais , Humanos , Microscopia Crioeletrônica , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo , Angiotensina II/química , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Receptores de Angiotensina/metabolismo
8.
Nature ; 600(7890): 759-764, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34880501

RESUMO

The σ2 receptor has attracted intense interest in cancer imaging1, psychiatric disease2, neuropathic pain3-5 and other areas of biology6,7. Here we determined the crystal structure of this receptor in complex with the clinical candidate roluperidone2 and the tool compound PB288. These structures templated a large-scale docking screen of 490 million virtual molecules, of which 484 compounds were synthesized and tested. We identified 127 new chemotypes with affinities superior to 1 µM, 31 of which had affinities superior to 50 nM. The hit rate fell smoothly and monotonically with docking score. We optimized three hits for potency and selectivity, and achieved affinities that ranged from 3 to 48 nM, with up to 250-fold selectivity versus the σ1 receptor. Crystal structures of two ligands bound to the σ2 receptor confirmed the docked poses. To investigate the contribution of the σ2 receptor in pain, two potent σ2-selective ligands and one potent σ1/σ2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands showed time-dependent decreases in mechanical hypersensitivity in the spared nerve injury model9, suggesting that the σ2 receptor has a role in nociception. This study illustrates the opportunities for rapid discovery of in vivo probes through structure-based screens of ultra large libraries, enabling study of underexplored areas of biology.


Assuntos
Neuralgia , Receptores sigma , Animais , Ligantes , Camundongos , Neuralgia/tratamento farmacológico , Receptores sigma/metabolismo , Relação Estrutura-Atividade
9.
Nature ; 600(7887): 170-175, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789874

RESUMO

The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.


Assuntos
Microscopia Crioeletrônica , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Prurido/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/química , Agonismo Inverso de Drogas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/ultraestrutura
10.
Nat Chem Biol ; 19(4): 416-422, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36302898

RESUMO

The human MAS-related G protein-coupled receptor X1 (MRGPRX1) is preferentially expressed in the small-diameter primary sensory neurons and involved in the mediation of nociception and pruritus. Central activation of MRGPRX1 by the endogenous opioid peptide fragment BAM8-22 and its positive allosteric modulator ML382 has been shown to effectively inhibit persistent pain, making MRGPRX1 a promising target for non-opioid pain treatment. However, the activation mechanism of MRGPRX1 is still largely unknown. Here we report three high-resolution cryogenic electron microscopy structures of MRGPRX1-Gαq in complex with BAM8-22 alone, with BAM8-22 and ML382 simultaneously as well as with a synthetic agonist compound-16. These structures reveal the agonist binding mode for MRGPRX1 and illuminate the structural requirements for positive allosteric modulation. Collectively, our findings provide a molecular understanding of the activation and allosteric modulation of the MRGPRX1 receptor, which could facilitate the structure-based design of non-opioid pain-relieving drugs.


Assuntos
Dor , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica , Sítio Alostérico
12.
J Biol Chem ; 299(12): 105436, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944616

RESUMO

Structural variations (SV) are critical genome changes affecting human diseases. Although many hybridization-based methods exist, evaluating SVs through next-generation sequencing (NGS) data is still necessary for broader research exploration. Here, we comprehensively compared the performance of 16 SV callers and multiple NGS platforms using NA12878 whole genome sequencing (WGS) datasets. The results indicated that several SV callers performed well relatively, such as Manta, GRIDSS, LUMPY, TARDIS, FermiKit, and Wham. Meanwhile, all NGS platforms have a similar performance using a single software. Additionally, we found that the source of undetected SVs was mostly from long reads datasets, therefore, the more appropriate strategy for accurate SV detection will be an integration of long and shorter reads in the future. At present, in the period of NGS as a mainstream method in bioinformatics, our study would provide helpful and comprehensive guidelines for specific categories of SV research.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional , Sequenciamento Completo do Genoma , Genoma Humano
13.
Small ; : e2400965, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506595

RESUMO

Nanostructured metal hydrides with unique morphology and improved hydrogen storage properties have attracted intense interests. However, the study of the growth process of highly active borohydrides remains challenging. Herein, for the first time the synthesis of LiBH4 nanorods through a hydrogen-assisted one-pot solvothermal reaction is reported. Reaction of n-butyl lithium with triethylamine borane in n-hexane under 50 bar of H2 at 40-100 °C gives rise to the formation of the [100]-oriented LiBH4 nanorods with 500-800 nm in diameter, whose growth is driven by orientated attachment and ligand adsorption. The unique morphology enables the LiBH4 nanorods to release hydrogen from ≈184 °C, 94 °C lower than the commercial sample (≈278 °C). Hydrogen release amounts to 13 wt% within 40 min at 450 °C with a stable cyclability, remarkably superior to the commercial LiBH4 (≈9.1 wt%). More importantly, up to 180 °C reduction in the onset temperature of hydrogenation is successfully attained by the nanorod sample with respect to the commercial counterpart. The LiBH4 nanorods show no foaming during dehydrogenation, which improves the hydrogen cycling performance. The new approach will shed light on the preparation of nanostructured metal borohydrides as advanced functional materials.

14.
Small ; 20(3): e2305664, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691085

RESUMO

Inorganic CsPbX3 perovskite quantum dots (PeQDs) show great potential in white light-emitting diodes (WLEDs) due to excellent optoelectronic properties, but their practical application is hampered by low photoluminescence quantum yield (PLQY) and especially poor stability. Herein,  we developed an in-situ and general multidentate ligand passivation strategy that allows for CsPbX3 PeQDs not only near-unit PLQY, but significantly improved stability against storage, heat, and polar solvent. The enhanced optical property arises from high effectiveness of the multidentate ligand, diethylenetriaminepentaacetic acid (DTPA) with five carboxyl groups, in passivating uncoordinated Pb2+ defects and suppressing nonradiative recombination. First-principles calculations reveal that the excellent stability is attributed to tridentate binding mode of DTPA that remarkably boosts the adsorption capacity to PeQD core. Finally, combining the green and red PeQDs with blue chip,  we demonstrated highly luminous WLEDs with distinctly enhanced operation stability, a wide color gamut of 121.3% of national television system committee, standard white light of (0.33,0.33) in CIE 1931, and tunable color temperatures from warm to cold white light readily by emitters' ratio. This study provides an operando yet general approach to achieve efficient and stable PeQDs for WLEDs and accelerates their progress to commercialization.

15.
Small ; : e2401645, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764309

RESUMO

Anionic redox chemistry enables extraordinary capacity for Li- and Mn-rich layered oxides (LMROs) cathodes. Unfortunately, irreversible surface oxygen evolution evokes the pernicious phase transition, structural deterioration, and severe electrode-electrolyte interface side reaction with element dissolution, resulting in fast capacity and voltage fading of LMROs during cycling and hindering its commercialization. Herein, a redox couple strategy is proposed by utilizing copper phthalocyanine (CuPc) to address the irreversibility of anionic redox. The Cu-N synergistic effect of CuPc could not only inhibit surface oxygen evolution by reducing the peroxide ion O2 2- back to lattice oxygen O2-, but also enhance the reaction activity and reversibility of anionic redox in bulk to achieve a higher capacity and cycling stability. Moreover, the CuPc strategy suppresses the interface side reaction and induces the forming of a uniform and robust LiF-rich cathode electrolyte, interphase (CEI) to significantly eliminate transition metal dissolution. As a result, the CuPc-enhanced LMRO cathode shows superb cycling performance with a capacity retention of 95.0% after 500 long-term cycles. This study sheds light on the great effect of N-based redox couple to regulate anionic redox behavior and promote the development of high energy density and high stability LMROs cathode.

16.
Microb Cell Fact ; 23(1): 100, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566071

RESUMO

Surfactin is a cyclic hexalipopeptide compound, nonribosomal synthesized by representatives of the Bacillus subtilis species complex which includes B. subtilis group and its closely related species, such as B. subtilis subsp subtilis, B. subtilis subsp spizizenii, B. subtilis subsp inaquosorum, B. atrophaeus, B. amyloliquefaciens, B. velezensis (Steinke mSystems 6: e00057, 2021) It functions as a biosurfactant and signaling molecule and has antibacterial, antiviral, antitumor, and plant disease resistance properties. The Bacillus lipopeptides play an important role in agriculture, oil recovery, cosmetics, food processing and pharmaceuticals, but the natural yield of surfactin synthesized by Bacillus is low. This paper reviews the regulatory pathways and mechanisms that affect surfactin synthesis and release, highlighting the regulatory genes involved in the transcription of the srfAA-AD operon. The several ways to enhance surfactin production, such as governing expression of the genes involved in synthesis and regulation of surfactin synthesis and transport, removal of competitive pathways, optimization of media, and fermentation conditions were commented. This review will provide a theoretical platform for the systematic genetic modification of high-yielding strains of surfactin.


Assuntos
Bacillus , Bacillus/genética , Bacillus/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Óperon , Fermentação , Lipopeptídeos , Peptídeos Cíclicos
17.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159929

RESUMO

AIMS: Bacillus licheniformis AQ is an industrial strain with high production of alkaline protease (AprE), which has great industrial application value. However, how to regulate the production of AprE in the process of industrial fermentation is still not completely clear. Therefore, it is important to understand the metabolic process of AprE production in the industrial fermentation medium. METHODS AND RESULTS: In this study, transcriptome sequencing of the whole fermentation course was performed to explore the synthesis and regulation mechanism of AprE in B. licheniformis AQ. During the fermentation process, the AprE got continuously accumulated, reaching a peak of 42 020 U/mL at the fermentation endpoint (48 h). Meanwhile, the highly expressed genes were observed. Compared with the fermentation endpoint, there were 61 genes in the intersection of differentially expressed genes, functioning as catabolic processes, peptidases and inhibitors, chaperones, and folding catalysts. Furthermore, the protein-protein interactions network of AprE was constructed. CONCLUSION: This study provides important transcriptome information for B. licheniformis AQ and potential molecular targets for further improving the production of AprE.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Endopeptidases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Fermentação , Transcriptoma
18.
Bioorg Chem ; 144: 107140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245950

RESUMO

Two new compounds namely [Zn(L1)phen]31 and Ni(L1)phen(MeOH) 2 (L1 = 3, 5-dichlorosalicylaldehyde thiosemicarbazone) were synthesized by the slow evaporation method at room temperature. The structure of ligand L1 was determined using 1H NMR and 13C NMR spectra. X-ray single crystal diffraction analysis revealed that compounds 1-2 can form 3D supramolecular network structures through π···π stacking and hydrogen bonding interactions. The DFT calculation shows that the coordination of ligand and metal is in good agreement with the experimental results. Hirshfeld surface analysis revealed that H…H and Cl…H interactions were the predominant interactions in compounds 1-2. Energy framework analysis indicated that dispersion energy played a dominant role in the energy composition of compounds 1-2. The inhibitory effects of compounds 1-2 against Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA) were tested using the paper disk diffusion method (1: E. coli: 18 mm, MRSA: 17 mm, 2: E. coli: 15 mm, MRSA: 16 mm). Ion releasing experiments were conducted to assess the ion release capacity of compounds 1-2 (Zn2+, 4 days, 38.33 µg/mL; Ni2+, 4 days, 29.12 µg/mL). Molecular docking demonstrated the interaction modes of compounds 1-2 with UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and dihydrofolate reductase (DHFR) in bacteria, involving hydrophobic, stacking, hydrogen bonding and halogen bonding interactions. The generation of reactive oxygen species (ROS) in bacteria under the presence of compounds 1-2 were evaluated using a fluorescent dye known as dichlorodihydrofluorescein diacetate (DCFH-DA). Potential antibacterial mechanisms of compounds 1-2 were proposed.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Escherichia coli , Ligantes , Simulação de Acoplamento Molecular , Zinco/farmacologia , Zinco/química , Níquel/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia
19.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33990467

RESUMO

Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs (KCNQ1+KCNE1), a slowly activating K+ current, plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage-sensing domain (VSD) of the IKs channel. Here, we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed the drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Potenciais de Ação/fisiologia , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Cães , Furanos/farmacologia , Expressão Gênica , Cobaias , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Moxifloxacina/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Potássio/metabolismo , Cultura Primária de Células , Piridinas/farmacologia , Pirimidinas/farmacologia , Sódio/metabolismo , Sulfonamidas/farmacologia , Transgenes , Xenopus laevis
20.
Plant Dis ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587798

RESUMO

Rice blast, caused by Pyricularia oryzae, is one of the most destructive rice diseases worldwide. Using resistant rice varieties is the most cost-effective way to control rice blast. Consequently, it is critical to monitor the distribution frequency of avirulence genes in rice planting field to facilitate the breedings of resistant rice varieties. In this study, we established a rapid RPA-LFD detection system for the identification of AvrPik, Avr-Piz-t and Avr-Pi9. The optimized reaction temperature and duration were 37°C and 20 min, indicating that the reaction system could be initiated by body temperature without relying on any precision instruments. Specificity analysis showed that the primer and probe combinations targeting three Avr genes exhibited a remarkable specificity for at genus-level detection. Under the optimized condition, the lower detected thresholds of AvrPik, Avr-Piz-t and Avr-Pi9 were 10 fg/µl, 100 fg/µl and 10 pg/µl, respectively. Notably, the detection sensitivity of three Avr genes was much higher than that of PCR. In addition, we also successfully detected the presence of AvrPik, Avr-Piz-t and Avr-Pi9 in the leaf and panicle blast lesions with the RPA-LFD detection system. In particular, the genomic DNA was extracted using the simpler PEG-NaOH rapid extraction method. In summary, we developed the RPA detection system for AvrPik, Avr-Pi9 and Avr-Piz-t, combined with the PEG-NaOH rapid DNA extraction method. The innovative approach achieved rapid, real-time and accurate detection of three Avr genes in the field, which is helpful to understand the distribution frequency of the three Avr genes in the field and provide theoretical reference for the scientific layout of rice resistant varieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA