Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Small ; 20(25): e2308063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200674

RESUMO

The ligament, which connects bones at the joints, has both high water content and excellent mechanical properties in living organisms. However, it is still challenging to fabricate fibrous materials that possess high water content and ligament-like mechanical characteristics simultaneously. Herein, the design and preparation of a ligament-mimicking multicomponent fiber is reported through stepwise assembly of polysaccharide, calcium, and dopamine. In simulated body fluid, the resulting fiber has a water content of 40 wt%, while demonstrating strength of ≈120 MPa, a Young's modulus of ≈3 GPa, and a toughness of ≈25 MJ m-3. Additionally, the multicomponent fiber exhibits excellent creep and fatigue resistance, as well as biocompatibility to support cell growth in vitro. These findings suggest that the fiber has potential for engineering high-performance artificial ligament.

2.
Mol Ther ; 31(1): 66-77, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36045584

RESUMO

Despite the demonstrated immense potential of immune checkpoint inhibitors in various types of cancers, only a minority of patients respond to these therapies. Immunocytokines designed to deliver an immune-activating cytokine directly to the immunosuppressive tumor microenvironment (TME) and block the immune checkpoint simultaneously may provide a strategic advantage over the combination of two single agents. To increase the response rate to checkpoint blockade, in this study, we developed a novel immunocytokine (LH01) composed of the antibody against programmed death-ligand 1 (PD-L1) fused to interleukin (IL)-15 receptor alpha-sushi domain/IL-15 complex. We demonstrate that LH01 efficiently binds mouse or human PD-L1 and maintains IL-15 stimulatory activity. In syngeneic mouse models, LH01 showed improved antitumor efficacy and safety versus anti-PD-L1 plus LH02 (Fc-sushi-IL15) combination and overcame resistance to anti-PD-L1 treatment. Mechanistically, the dual anti-immunosuppressive function of LH01 activated both the innate and adaptive immune responses and induced a favorable and immunostimulatory TME. Furthermore, combination therapy with LH01 and bevacizumab exerts synergistic antitumor effects in an HT29 colorectal xenograft model. Collectively, our results provide supporting evidence that fusion of anti-PD-L1 and IL-15 might be a potent strategy to treat patients with cold tumors or resistance to checkpoint blockade.


Assuntos
Antígeno B7-H1 , Resistencia a Medicamentos Antineoplásicos , Proteínas de Checkpoint Imunológico , Interleucina-15 , Neoplasias , Animais , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Modelos Animais de Doenças , Interleucina-15/metabolismo , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Proteínas de Checkpoint Imunológico/uso terapêutico
3.
Appl Microbiol Biotechnol ; 107(10): 3217-3227, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37058229

RESUMO

Being an important immune stimulant of T lymphocytes and NK cells, the recombinant human interleukin-15 (rhIL-15) has been extensively researched in tumor immunotherapy or as a vaccine adjuvant. However, the rhIL-15 manufacturing level lags far behind its growing clinical demand due to the lack of efficient and exact analysis methodologies to characterize the trace by-products, typically redox and deamidation. In order to improve the production and quality control of rhIL-15, here we developed an expanded resolution reverse-phase high-performance liquid chromatography (ExRP-HPLC) approach to quickly and accurately analyze the oxidation and reduction by-products of rhIL-15, which may appear during the purification processes. Firstly, we developed RP-HPLC methods which can separate rhIL-15 fractions with different levels of oxidization or reduction, respectively, and the redox status of each peak was then determined by measuring the intact mass with a high-resolution mass spectrometer (UPLC-MS). To further clarify the complex pattern of oxidization of specific residues, the peaks with various oxidation levels were digested into pieces for peptide mapping to pinpoint the exact changes of oxygen and hydrogen atoms in the rhIL-15 by-products. In addition, we performed the ExRP-HPLC and UPLC-MS analysis of partially deamidated rhIL-15 to characterize their oxidation and reduction. Our work is the first in-depth characterization of the redox by-products of rhIL-15, even for deamidated impurities. The ExRP-HPLC method we reported can facilitate the rapid and accurate quality analysis of rhIL-15, which is substantially helpful for streamlining the industrial manufacturing of rhIL-15 to better meet the demands of clinical applications. KEYPOINTS: • The oxidization and reduction rhIL-15 by-products were characterized for the first time. • The changes of oxygen and hydrogen atoms in rhIL-15 redox by-products were accurately determined by UPLC-MS. • Oxidation and reduction by-products of deamidated rhIL-15 were further analyzed.


Assuntos
Interleucina-15 , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Proteínas Recombinantes/metabolismo , Oxirredução , Interleucina-2/química
4.
Microb Cell Fact ; 21(1): 128, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761329

RESUMO

BACKGROUND: In previous work, we developed an E. coli extracellular secretion platform XTHHly based on the hemolysin A secretion system. It can produce bioactive peptides with simple purification procedures. However, the wider application of this platform is limited by poor secretion efficiency. RESULTS: In this study, we first discovered a positive correlation between the isoelectric point (pI) value of the target protein and the secretion level of the XTHHly system. Given the extremely high secretion level of S tag, we fused it at the N-terminus and created a novel SHTXTHHly system. The SHTXTHHly system significantly increased the secretion levels of antimicrobial peptides (PEW300, LL37, and Aurein 1.2) with full bioactivities, suggesting its excellent capacity for secretory production of bioactive peptides. Furthermore, RGDS, IL-15, and alcohol dehydrogenase were successfully secreted, and their bioactivities were largely maintained in the fusion proteins, indicating the potential applications of the novel system for the rapid determination of protein bioactivities. Finally, using the SHTXTHHly system, we produced the monomeric Fc, which showed a high affinity for Fcγ Receptor I and mediated the antibody-dependent immunological effects of immune cells, demonstrating its potential applications in immunotherapies. CONCLUSIONS: The SHTXTHHly system described here facilitates the secretory production of various types of proteins in E. coli. In comparison to previously reported expression systems, our work enlightens an efficient and cost-effective way to evaluate the bioactivities of target proteins or produce them.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Transporte Biológico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Peptídeos/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
5.
J Bone Miner Metab ; 40(3): 415-421, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35103839

RESUMO

INTRODUCTION: The progression of osteoarthritis (OA) requires the involvement of lipopolysaccharide (LPS)-induced inflammation, in which circTMOD3 plays an important role. We predicted that circTMOD3 could interact with miR-27a to inhibit LPS-induced chondrocyte apoptosis and explored the interaction between circTMOD3 and miR-27a in OA. MATERIALS AND METHODS: Total RNAs were isolated from cartilage tissue samples from both OA patients (n = 62) and controls (n = 62) and subjected to RT-qPCRs to determine circTMOD3 and miR-27a (mature and premature) expression. Subcellular location of circTMOD3 and its interaction with premature miR-27a were analyzed using subcellular fractionation assay and RNA-RNA pulldown assay, respectively. CircTMOD3 was overexpressed in chondrocytes to study its role in miR-27a maturation. The roles of circTMOD3 and miR-27a in LPS-induced chondrocyte apoptosis were analyzed using cell apoptosis assay. RESULTS: CircTMOD3 and premature miR-27a levels were increased while mature miR-27a level was decreased in OA. CircTMOD3 was located in both nuclear and cytoplasm fractions of chondrocytes. CircTMOD3 directly interacted with premature miR-27a and promoted LPS-induced chondrocyte apoptosis, while miR-27a inhibited LPS-induced chondrocyte apoptosis. Moreover, circTMOD3 overexpression suppressed miR-27a maturation and reduced the inhibitory effects of miR-27a on LPS-induced chondrocyte apoptosis. CONCLUSION: CircTMOD3 suppresses miR-27a maturation in OA to promote chondrocyte apoptosis induced by LPS.


Assuntos
Condrócitos , MicroRNAs , Osteoartrite , RNA Circular , Apoptose/genética , Estudos de Casos e Controles , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , RNA Circular/genética , RNA Circular/metabolismo
6.
Appl Microbiol Biotechnol ; 106(21): 7039-7050, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184689

RESUMO

Interleukin-15 (IL-15) is a promising candidate for cancer immunotherapy due to its potent immune-activating effects. There are several IL-15 molecules currently in clinical trials but facing shortages of poor half-life, circulation instability, or complicated production and quality control processes. The aim of this study is to design a novel IL-15 superagonist to set out the above difficulties, and we constructed F4RLI consisting of the GS-linker spaced IgG4 Fc fragment, soluble IL-15 Rα (sIL-15Rα), and IL-15(N72D). Using a single plasmid transient transfection in HEK293E cells, the matured F4RLI was secreted in the form of homodimer and got purified by an easy step of protein A affinity chromatography. The F4RLI product can significantly stimulate the proliferation of human CD3+CD8+ T cells and NK cells in vitro. Meanwhile, F4RLI greatly extended the half-life and prolonged the exposure of IL-15 in mice nearly by 28- and 200-fold, respectively, in comparison with that of the IL-15 monomer. In vivo, F4RLI vastly expanded mouse splenic CD8+ T lymphocytes, illustrating its potential in tumor immunotherapy. Further studies showed that the combination of F4RLI with the immune checkpoint blocker atezolizumab played a synergistic effect in treating MC38 mouse tumor by increasing the percentage of CD8+ T cells in tumor tissue. Moreover, the combination therapy of F4RLI with the angiogenesis inhibitor bevacizumab resulted in significant tumor growth suppression in a xenograft human HT-29 mouse model. Overall, our results demonstrate a homodimeric IL-15 superagonist F4RLI with advances in manufacturing processes and biopharmaceutical applications for cancer immunotherapy. KEY POINTS: • The homodimeric structure of F4RLI facilitates its easy production processes and quality control. • The fusion with Fc and sIL-15Rα extends the plasma half-life of IL-15 by about 28-fold. • F4RLI can play synergistic antitumor activity with the PD-1/PD-L1 checkpoint inhibitor or angiogenesis inhibitor.


Assuntos
Produtos Biológicos , Interleucina-15 , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Inibidores da Angiogênese/farmacologia , Antígeno B7-H1/metabolismo , Bevacizumab/farmacologia , Produtos Biológicos/farmacologia , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Meia-Vida , Inibidores de Checkpoint Imunológico/farmacologia , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/metabolismo , Imunoterapia/métodos , Interleucina-15/agonistas , Receptor de Morte Celular Programada 1/metabolismo , Antineoplásicos/farmacologia
7.
Macromol Biosci ; 24(3): e2300339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37848181

RESUMO

The rapid growth in the portion of the aging population has led to a consequent increase in demand for biomedical hydrogels, together with an assortment of challenges that need to be overcome in this field. Smart hydrogels can autonomously sense and respond to the physiological/pathological changes of the tissue microenvironment and continuously adapt the response according to the dynamic spatiotemporal shifts in conditions. This along with other favorable properties, make smart hydrogels excellent materials for employing toward improving the precision of treatment for age-related diseases. The key factor during the smart hydrogel design is on accurately identifying the characteristics of natural tissues and faithfully replicating the composition, structure, and biological functions of these tissues at the molecular level. Such hydrogels can accurately sense distinct physiological and external factors such as temperature and biologically active molecules, so they may in turn actively and promptly adjust their response, by regulating their own biological effects, thereby promoting damaged tissue repair. This review summarizes the design strategies employed in the creation of smart hydrogels, their response mechanisms, as well as their applications in field of tissue engineering; and concludes by briefly discussing the relevant challenges and future prospects.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Cicatrização , Temperatura
8.
ACS Appl Mater Interfaces ; 16(26): 33971-33980, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38898423

RESUMO

Flexible electronics toward high integration, miniaturization, and multifunctionality, leading to a dramatic increase in power density. However, the low thermal conductivity of flexible substrates impedes efficient heat dissipation and device performance improvement. In this work, we propose a template-assisted chemical conversion strategy for obtaining boron nitride nanotube (BNNT) films with high thermal conductivity and great flexibility. Aligned carbon nanotube (CNT) films have been adopted as templates; a low-temperature chemical conversion followed by a high-temperature annealing has been carried out to produce a highly ordered BNNT film. Benefiting from the high orientation order, the BNNT film exhibits an exceptional thermal conductivity of 45.5 W m-1 K-1 and presents excellent heat dissipation capability, much superior to the commonly used polyimide film. Furthermore, the BNNT film demonstrated excellent flexibility and high insulation resistance. The test of integration with film resistors demonstrated its potential as a thermally conductive substrate for electronics cooling. This work provides a solution for the effective thermal management of flexible electronics.

9.
ArXiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38344225

RESUMO

Central to the clinical adoption of patient-specific modeling strategies is demonstrating that simulation results are reliable and safe. Indeed, simulation frameworks must be robust to uncertainty in model input(s), and levels of confidence should accompany results. In this study, we applied a coupled uncertainty quantification-finite element (FE) framework to understand the impact of uncertainty in vascular material properties on variability in predicted stresses. Univariate probability distributions were fit to material parameters derived from layer-specific mechanical behavior testing of human coronary tissue. Parameters were assumed to be probabilistically independent, allowing for efficient parameter ensemble sampling. In an idealized coronary artery geometry, a forward FE model for each parameter ensemble was created to predict tissue stresses under physiologic loading. An emulator was constructed within the UncertainSCI software using polynomial chaos techniques, and statistics and sensitivities were directly computed. Results demonstrated that material parameter uncertainty propagates to variability in predicted stresses across the vessel wall, with the largest dispersions in stress within the adventitial layer. Variability in stress was most sensitive to uncertainties in the anisotropic component of the strain energy function. Moreover, unary and binary interactions within the adventitial layer were the main contributors to stress variance, and the leading factor in stress variability was uncertainty in the stress-like material parameter that describes the contribution of the embedded fibers to the overall artery stiffness. Results from a patient-specific coronary model confirmed many of these findings. Collectively, these data highlight the impact of material property variation on uncertainty in predicted artery stresses and present a pipeline to explore and characterize forward model uncertainty in computational biomechanics.

10.
Biomech Model Mechanobiol ; 23(3): 927-940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38361087

RESUMO

Central to the clinical adoption of patient-specific modeling strategies is demonstrating that simulation results are reliable and safe. Indeed, simulation frameworks must be robust to uncertainty in model input(s), and levels of confidence should accompany results. In this study, we applied a coupled uncertainty quantification-finite element (FE) framework to understand the impact of uncertainty in vascular material properties on variability in predicted stresses. Univariate probability distributions were fit to material parameters derived from layer-specific mechanical behavior testing of human coronary tissue. Parameters were assumed to be probabilistically independent, allowing for efficient parameter ensemble sampling. In an idealized coronary artery geometry, a forward FE model for each parameter ensemble was created to predict tissue stresses under physiologic loading. An emulator was constructed within the UncertainSCI software using polynomial chaos techniques, and statistics and sensitivities were directly computed. Results demonstrated that material parameter uncertainty propagates to variability in predicted stresses across the vessel wall, with the largest dispersions in stress within the adventitial layer. Variability in stress was most sensitive to uncertainties in the anisotropic component of the strain energy function. Moreover, unary and binary interactions within the adventitial layer were the main contributors to stress variance, and the leading factor in stress variability was uncertainty in the stress-like material parameter that describes the contribution of the embedded fibers to the overall artery stiffness. Results from a patient-specific coronary model confirmed many of these findings. Collectively, these data highlight the impact of material property variation on uncertainty in predicted artery stresses and present a pipeline to explore and characterize forward model uncertainty in computational biomechanics.


Assuntos
Vasos Coronários , Análise de Elementos Finitos , Estresse Mecânico , Humanos , Vasos Coronários/fisiologia , Incerteza , Fenômenos Biomecânicos , Modelos Cardiovasculares , Simulação por Computador , Anisotropia
11.
Adv Sci (Weinh) ; 11(25): e2401586, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666496

RESUMO

The continued miniaturization of chips demands highly thermally conductive materials and effective thermal management strategies. Particularly, the high-field transport of the devices built with 2D materials is limited by self-heating. Here a systematic control of heat flow in single-side fluorinated graphene (FG) with varying degrees of fluorination is reported, revealing a superior room-temperature thermal conductivity as high as 128 W m-1 K-1. Monolayer graphene/FG lateral heterostructures with seamless junctions are approached for device fabrication. Efficient in-plane heat removal paths from graphene channel to side FG are created, contributing significant reduction of the channel peak temperature and improvement in the current-carrying capability and power density. Molecular dynamics simulations indicate that the interfacial thermal conductance of the heterostructure is facilitated by the high degree of overlap in the phonon vibrational spectra. The findings offer novel design insights for efficient heat dissipation in micro- and nanoelectronic devices.

12.
Cell Rep Med ; 5(5): 101531, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38697105

RESUMO

The clinical applications of immunocytokines are severely restricted by dose-limiting toxicities. To address this challenge, here we propose a next-generation immunocytokine concept involving the design of LH05, a tumor-conditional anti-PD-L1/interleukin-15 (IL-15) prodrug. LH05 innovatively masks IL-15 with steric hindrance, mitigating the "cytokine sink" effect of IL-15 and reducing systemic toxicities associated with wild-type anti-PD-L1/IL-15. Moreover, upon specific proteolytic cleavage within the tumor microenvironment, LH05 releases an active IL-15 superagonist, exerting potent antitumor effects. Mechanistically, the antitumor efficacy of LH05 depends on the increased infiltration of CD8+ T and natural killer cells by stimulating the chemokines CXCL9 and CXCL10, thereby converting cold tumors into hot tumors. Additionally, the tumor-conditional anti-PD-L1/IL-15 can synergize with an oncolytic virus or checkpoint blockade in advanced and metastatic tumor models. Our findings provide a compelling proof of concept for the development of next-generation immunocytokines, contributing significantly to current knowledge and strategies of immunotherapy.


Assuntos
Antígeno B7-H1 , Interleucina-15 , Microambiente Tumoral , Interleucina-15/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Feminino , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia
13.
Medicine (Baltimore) ; 102(47): e36141, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38013321

RESUMO

Red blood cell distribution width (RDW) to human serum albumin (ALB) ratio (RDW/ALB Ratio, RAR) is a prognostic factor for adverse outcomes in different disease populations. However, the relationship between RAR and pulmonary embolism outcomes remains unclear. Therefore, this study set out to investigate the association between RAR and the risk of all-cause death in acute pulmonary embolism (APE) patients admitted to the intensive care unit (ICU). This is a retrospective study based on the MIMIC-IV database. The primary outcome was all-cause mortality among patients with APE (in-hospital and 1-year mortality). The relationship between RAR and all-cause mortality was assessed using Cox regression analysis. The survival curve was drawn to evaluate the predictive value of RAR for patient mortality. Correlations and threshold effects between RAR and all-cause mortality were analyzed using the generalized additive model (GAM). The study included 773 patients, and fully adjusted Cox regression models showed that RAR was associated with higher all-cause mortality in the hospital and one year later (all P < .05). In the GAM, the relationship between RAR and all-cause mortality was shown to be nonlinear, with a positive association between RAR and all-cause mortality in APE patients when RAR values were at low to moderate levels. This study revealed a significant association between RAR and the risk of all-cause day death in patients with pulmonary embolism. Higher RAR value was associated with increased in-hospital mortality and 1-year mortality.


Assuntos
Índices de Eritrócitos , Embolia Pulmonar , Humanos , Doença Aguda , Albuminas , Estudos de Coortes , Eritrócitos , Prognóstico , Estudos Retrospectivos
14.
ACS Appl Mater Interfaces ; 15(6): 7639-7662, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36719982

RESUMO

Polymer complex fibers (PCFs) are a novel kind of fiber material processed from polymer complexes that are assembled through noncovalent interactions. These can realize the synergy of functional components and miscibility on the molecular level. The dynamic character of noncovalent interactions endows PCFs with remarkable properties, such as reversibility, stimuli responsiveness, self-healing, and recyclability, enabling them to be applied in multidisciplinary fields. The objective of this article is to provide a review of recent progress in the field of PCFs. The classification based on chain interactions will be first introduced followed by highlights of the fabrication technologies and properties of PCFs. The effects of composition and preparation method on fiber properties are also discussed, with some emphasis on utilizing these for rational design. Finally, we carefully summarize recent advanced applications of PCFs in the fields of energy storage and sensors, water treatment, biomedical materials, artificial actuators, and biomimetic platforms. This review is expected to deepen the comprehension of PCF materials and open new avenues for developing PCFs with tailor-made properties for advanced application.

15.
J Biomater Sci Polym Ed ; 34(16): 2217-2231, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368489

RESUMO

The subchondral bone is an important part of cartilage which contains a large amount of hydroxyapatite. The mineral components of subchondral bone is the key factor which determines the biomechanical strength, and then affects the biological function of articular cartilage. Here, a mineralized polyacrylamide (PAM-Mineralized) hydrogel with good ALP activity, cell adhesion and biocompatibility was fabricated for subchondral bone tissue engineering. The micromorphology, composition and mechanical properties of PAM and PAM-Mineralized hydrogels were studied. The PAM hydrogels showed a porous structure, while the PAM-Mineralized hydrogels had well-distributed layers of hydroxyapatite mineralization on the surface. The XRD results show that the characteristic peak of hydroxyapatite (HA) was measured in PAM-Mineralized, indicating that the main component of the mineralized structure formed on the surface of the hydrogel after mineralization is HA. The formation of HA ectively decreased the rate of equilibrium swelling of the PAM hydrogel, with PAM-M reaching swelling equilibrium at 6 h. Meanwhile, compressive strength of PAM-Mineralized hydrogel (moisture state) reached 290 ± 30 kPa, compressive modulus reached 130 ± 4 kPa. PAM-Mineralized hydrogels did not affect the growth and proliferation of MC3T3-E1 cells. Surface mineralization of PAM hydrogel could significantly improve osteogenic differentiation of MC3T3-E1 cells. These results showed that PAM-Mineralized hydrogel could possess potential application in the field of subchondral bone tissue engineering.


Assuntos
Osteogênese , Engenharia Tecidual , Engenharia Tecidual/métodos , Durapatita/química , Hidrogéis/química
16.
Cell Biochem Biophys ; 81(1): 7-17, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36627482

RESUMO

Ferroptosis is a newfound mode of regulated cell death that may have potential to associate with prognostic or diagnostic factors in glioma. In this research, 5 genes related to glioma were screened through the FerrDb database, and we analyzed the combination between genes and glioma of survival and prognosis via TCGA, GEPIA, TIMER, and other databases. Survival curve and prognostic analysis showed that the overexpression of NFE2L2 and NOX4, respectively, has a remarkable link with a worse prognosis in glioma. Then, the association between the expression of the two genes and tumor-infiltrating immune cells level was explored based on the GSCA, and the immunity of NFE2L2 and NOX4 based on the TISIDB database was also investigated. In glioma, especially GBM, there is a strong association between gene expression and immune infiltration, even in macrophages, nTreg, and Th2 cells, which play immunosuppressive functions in TME. In conclusion, these results indicate that NFE2L2 and NOX4 could be risk prognosis biomarkers in glioma, and they bound up with immune infiltration and tumor immunity in tumorigenesis.


Assuntos
Ferroptose , Glioma , Humanos , Ferroptose/genética , Prognóstico , Glioma/genética , Carcinogênese , Biomarcadores , Biomarcadores Tumorais/genética , NADPH Oxidase 4/genética , Fator 2 Relacionado a NF-E2/genética
17.
J Biomater Sci Polym Ed ; 34(2): 243-257, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36005479

RESUMO

Hydrogels are widely used in biomedical engineering, which often require matched mechanical properties to meet specific demands. Recently, numerous research studies have contributed to tissue engineering hydrogels by soaking strategies to obtain designed properties. Herein, a strategy to fabricate poly(vinyl alcohol)/poly(acrylic acid)-ammonium sulfate (PVA/PAA-AS) hydrogel by successively soaking an aqueous PAA solution and (NH4)2SO4 solution based on the synergy of multiple hydrogen bonding and Hofmeister effect is reported, which exhibits remarkable comprehensive mechanical properties: rigidity (elastic modulus: 0.7-3.6 MPa), strength at break (tensile stress: 3.2-12.0 MPa; strain 320-650%), and toughness (fracture energy: 4.5-30.0 MJ m-3). Besides, PVA/PAA-AS hydrogel with unique spring-like microstructure exhibited super-resilience in 30% strain range by energy-transforming mechanism. Compared with pure PVA hydrogel, PVA/PAA-AS hydrogel has the equal excellent cytocompatibility. Therefore, PVA/PAA-AS hydrogel with high strength, modulus, toughness, super-resilience and excellent biocompatibility has potential applications in the soft tissue engineering field such as muscles, tendons, and ligaments.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Ligação de Hidrogênio , Álcool de Polivinil/química
18.
Comput Biol Med ; 152: 106407, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521358

RESUMO

BACKGROUND: Computational biomedical simulations frequently contain parameters that model physical features, material coefficients, and physiological effects, whose values are typically assumed known a priori. Understanding the effect of variability in those assumed values is currently a topic of great interest. A general-purpose software tool that quantifies how variation in these parameters affects model outputs is not broadly available in biomedicine. For this reason, we developed the 'UncertainSCI' uncertainty quantification software suite to facilitate analysis of uncertainty due to parametric variability. METHODS: We developed and distributed a new open-source Python-based software tool, UncertainSCI, which employs advanced parameter sampling techniques to build polynomial chaos (PC) emulators that can be used to predict model outputs for general parameter values. Uncertainty of model outputs is studied by modeling parameters as random variables, and model output statistics and sensitivities are then easily computed from the emulator. Our approaches utilize modern, near-optimal techniques for sampling and PC construction based on weighted Fekete points constructed by subsampling from a suitably randomized candidate set. RESULTS: Concentrating on two test cases-modeling bioelectric potentials in the heart and electric stimulation in the brain-we illustrate the use of UncertainSCI to estimate variability, statistics, and sensitivities associated with multiple parameters in these models. CONCLUSION: UncertainSCI is a powerful yet lightweight tool enabling sophisticated probing of parametric variability and uncertainty in biomedical simulations. Its non-intrusive pipeline allows users to leverage existing software libraries and suites to accurately ascertain parametric uncertainty in a variety of applications.


Assuntos
Coração , Software , Incerteza , Simulação por Computador , Bioengenharia
19.
Acta Pharm Sin B ; 13(5): 2071-2085, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250170

RESUMO

Developing universal CARs with improved flexible targeting and controllable activities is urgently needed. While several studies have suggested the potential of CD16a in tandem with monoclonal antibodies to construct universal CAR-T cells, the weak affinity between them is one of the limiting factors for efficacy. Herein, we systematically investigated the impact of Fcγ receptor (FcγR) affinity on CAR-T cells properties by constructing universal CARs using Fcγ receptors with different affinities for IgG1 antibodies, namely CD16a, CD32a, and CD64. We demonstrated that the activities of these universal CAR-T cells on tumor cells could be redirected and regulated by IgG1 antibodies. In xenografted mice, 64CAR chimeric Jurkat cells with the highest affinity showed significant antitumor effects in combination with herceptin in the HER2 low expression U251 MG model. However, in the CD20 high expression Raji model, 64CAR caused excessive activation of CAR-T cells, which resulted in cytokine release syndrome (CRS) and the decline of antitumor activity, and 32CAR with a moderate affinity brought the best efficacy. Our work extended the knowledge about FcγR-based universal CAR-T cells and suggested that only the FcγRCAR with an appropriate affinity can offer the optimal antitumor advantages of CAR-T cells.

20.
Mater Horiz ; 10(9): 3536-3547, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272086

RESUMO

Two-dimensional (2D) nanosheets have been assembled into various macroscopic structures for wide engineering applications. To fully explore their exceptional thermal, mechanical, and electrical properties, 2D nanosheets must be aligned into highly ordered structures due to their strong structural anisotropy. Structures stacked layer by layer such as films and fibers have been readily assembled from 2D nanosheets due to their planar geometry. However, scalable manufacturing of macroscopic structures with vertically aligned 2D nanosheets remains challenging, given their large lateral size with a thickness of only a few nanometers. Herein, we report a scalable and efficient microfluidics-enabled sheet-aligning process to assemble 2D nanosheets into a large-area film with a highly ordered vertical alignment. By applying microchannels with a high aspect ratio, 2D nanosheets were well aligned vertically under strong channel size confinement and high flow shear stress. A vertically aligned graphene sheet film was obtained and applied to effectively improve the heat transfer of thermal interfacial materials (TIMs). Superior through-plane thermal conductivity of 82.7 W m-1 K-1 at a low graphene content of 11.8 vol% was measured for vertically aligned TIMs. Thus, they demonstrate exceptional thermal management performance for switching power supplies with high reliability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA