RESUMO
BACKGROUND & AIMS: Although immunotherapy shows substantial advancement in colorectal cancer (CRC) with microsatellite instability high, it has limited efficacy for CRC with microsatellite stability (MSS). Identifying combinations that reverse immune suppression and prime MSS tumors for current immunotherapy approaches remains an urgent need. METHODS: An in vitro CRISPR screen was performed using coculture models of primary tumor cells and autologous immune cells from MSS CRC patients to identify epigenetic targets that could enhance immunotherapy efficacy in MSS tumors. RESULTS: We revealed EHMT2, a histone methyltransferase, as a potential target for MSS CRC. EHMT2 inhibition transformed the immunosuppressive microenvironment of MSS tumors into an immunomodulatory one by altering cytokine expression, leading to T-cell-mediated cytotoxicity activation and improved responsiveness to anti-PD1 treatment. We observed galectin-7 up-regulation upon EHMT2 inhibition, which converted a "cold" MSS tumor environment into a T-cell-inflamed one. Mechanistically, CHD4 repressed galectin-7 expression by recruiting EHMT2 to form a cotranscriptional silencing complex. Galectin-7 administration enhanced anti-PD1 efficacy in MSS CRC, serving as a potent adjunct cytokine therapy. CONCLUSIONS: Our findings suggest that targeting the EHMT2/galectin-7 axis could provide a novel combination strategy for immunotherapy in MSS CRC.
Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Imunoterapia , Citocinas , Galectinas/genética , Repetições de Microssatélites , Instabilidade de Microssatélites , Microambiente Tumoral , Antígenos de Histocompatibilidade , Histona-Lisina N-MetiltransferaseRESUMO
Whether and how tumor intrinsic signature determines macrophage-elicited metastasis remain elusive. Here, we show, in detailed studies of data regarding 7,477 patients of 20 types of human cancers, that only 13.8% ± 2.6%/27.9% ± 3.03% of patients with high macrophage infiltration index exhibit early recurrence/vascular invasion. In parallel, although macrophages enhance the motility of various hepatoma cells, their enhancement intensity is significantly heterogeneous. We identify that the expression of malignant Dicer, a ribonuclease that cleaves miRNA precursors into mature miRNAs, determines macrophage-elicited metastasis. Mechanistically, the downregulation of Dicer in cancer cells leads to defects in miRNome targeting NF-κB signaling, which in turn enhances the ability of cancer cells to respond to macrophage-related inflammatory signals and ultimately promotes metastasis. Importantly, transporting miR-26b-5p, the most potential miRNA targeting NF-κB signaling in hepatocellular carcinoma, can effectively reverse macrophage-elicited metastasis of hepatoma in vivo. Our results provide insights into the crosstalk between Dicer-elicited miRNome and cancer immune microenvironments and suggest that strategies to remodel malignant cell miRNome may overcome pro-tumorigenic activities of inflammatory cells.
Assuntos
Carcinoma Hepatocelular , MicroRNAs , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Carcinoma Hepatocelular/patologia , Transdução de Sinais/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genéticaRESUMO
BACKGROUND: The immune system plays a vital role in the pathological process of ischaemic stroke. However, the exact immune-related mechanism remains unclear. The current research aimed to identify immune-related key genes associated with ischaemic stroke. METHODS: CIBERSORT was utilized to reveal the immune cell infiltration pattern in ischaemic stroke patients. Meanwhile, a weighted gene coexpression network analysis (WGCNA) was utilized to identify meaningful modules significantly correlated with ischaemic stroke. The characteristic genes correlated with ischaemic stroke were identified by the following two machine learning methods: the support vector machine-recursive feature elimination (SVM-RFE) algorithm and least absolute shrinkage and selection operator (LASSO) logistic regression. RESULTS: The CIBERSORT results suggested that there was a decreased infiltration of naive CD4 T cells, CD8 T cells, resting mast cells and eosinophils and an increased infiltration of neutrophils, M0 macrophages and activated memory CD4 T cells in ischaemic stroke patients. Then, three significant modules (pink, brown and cyan) were identified to be significantly associated with ischaemic stroke. The gene enrichment analysis indicated that 519 genes in the above three modules were mainly involved in several inflammatory or immune-related signalling pathways and biological processes. Eight hub genes (ADM, ANXA3, CARD6, CPQ, SLC22A4, UBE2S, VIM and ZFP36) were revealed to be significantly correlated with ischaemic stroke by the LASSO logistic regression and SVM-RFE algorithm. The external validation combined with a RTâqPCR analysis revealed that the expression levels of ADM, ANXA3, SLC22A4 and VIM were significantly increased in ischaemic stroke patients and that these key genes were positively associated with neutrophils and M0 macrophages and negatively correlated with CD8 T cells. The mean AUC value of ADM, ANXA3, SLC22A4 and VIM was 0.80, 0.87, 0.91 and 0.88 in the training set, 0.85, 0.77, 0.86 and 0.72 in the testing set and 0.87, 0.83, 0.88 and 0.91 in the validation samples, respectively. CONCLUSIONS: These results suggest that the ADM, ANXA3, SLC22A4 and VIM genes are reliable serum markers for the diagnosis of ischaemic stroke and that immune cell infiltration plays a crucial role in the occurrence and development of ischaemic stroke.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Redes Reguladoras de Genes , Humanos , AVC Isquêmico/genética , Acidente Vascular Cerebral/genética , Máquina de Vetores de Suporte , Enzimas de Conjugação de UbiquitinaRESUMO
BACKGROUND: The immune system plays a vital role in the pathophysiology of acute myocardial infarction (AMI). However, the exact immune related mechanism is still unclear. This research study aimed to identify key immune-related genes involved in AMI. METHODS: CIBERSORT, a deconvolution algorithm, was used to determine the proportions of 22 subsets of immune cells in blood samples. The weighted gene co-expression network analysis (WGCNA) was used to identify key modules that are significantly associated with AMI. Then, CIBERSORT combined with WGCNA were used to identify key immune-modules. The protein-protein interaction (PPI) network was constructed and Molecular Complex Detection (MCODE) combined with cytoHubba plugins were used to identify key immune-related genes that may play an important role in the occurrence and progression of AMI. RESULTS: The CIBERSORT results suggested that there was a decrease in the infiltration of CD8 + T cells, gamma delta (γδ) T cells, and resting mast cells, along with an increase in the infiltration of neutrophils and M0 macrophages in AMI patients. Then, two modules (midnightblue and lightyellow) that were significantly correlated with AMI were identified, and the salmon module was found to be significantly associated with memory B cells. Gene enrichment analysis indicated that the 1,171 genes included in the salmon module are mainly involved in immune-related biological processes. MCODE analysis was used to identify four different MCODE complexes in the salmon module, while four hub genes (EEF1B2, RAC2, SPI1, and ITGAM) were found to be significantly correlated with AMI. The correlation analysis between the key genes and infiltrating immune cells showed that SPI1 and ITGAM were positively associated with neutrophils and M0 macrophages, while they were negatively associated with CD8 + T cells, γδ T cells, regulatory T cells (Tregs), and resting mast cells. The RT-qPCR validation results found that the expression of the ITGAM and SPI1 genes were significantly elevated in the AMI samples compared with the samples from healthy individuals, and the ROC curve analysis showed that ITGAM and SPI1 had a high diagnostic efficiency for the recognition of AMI. CONCLUSIONS: Immune cell infiltration plays a crucial role in the occurrence and development of AMI. ITGAM and SPI1 are key immune-related genes that are potential novel targets for the prevention and treatment of AMI.
Assuntos
Perfilação da Expressão Gênica , Infarto do Miocárdio , Linfócitos T CD8-Positivos/metabolismo , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Macrófagos/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Mapas de Interação de ProteínasRESUMO
OBJECTIVES: To investigate a strategy for ultra-low volume contrast percutaneous coronary intervention (PCI) with the aims of preserving renal function and observing the 90-day clinical endpoint in patients with non-ST-elevated myocardial infarction (non-STEMI) and chronic kidney disease (CKD). BACKGROUND: The feasibility, safety, and clinical utility of PCI with ultra-low radio-contrast medium in patients with non-STEMI and CKD are unknown. METHODS: A total of 29 patients with non-STEMI and CKD (estimated glomerular filtration rate [eGFR] of ≤60 ml/min/1.73 m2 ) were included. Ultra-low volume contrast PCI was performed after minimal contrast coronary angiography using zero contrast optical coherence tomography (OCT) guidance. Pre- and post-PCI angiographic measurements were performed using quantitative flow ratio (QFR) for pre-perfusion assessment and verifying improvement. RESULTS: The median creatinine level was 2.1 (inter-quartile range 1.8-3.3), and mean eGFR was 48 ± 8 ml/min/1.73 m2 pre-PCI. During the PCI procedure, OCT revealed 15 (52%) cases of abnormalities post-dilation. There was no significant change in the creatinine level and eGFR in the short- or long-term, and no major adverse events were observed. CONCLUSION: In non-STEMI patients with high-risk CKD who require revascularization, QFR and no contrast OCT-guided ultra-low contrast PCI may be performed safely without major adverse events.
Assuntos
Infarto do Miocárdio sem Supradesnível do Segmento ST , Intervenção Coronária Percutânea , Insuficiência Renal Crônica , Angiografia Coronária , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Tomografia de Coerência Óptica , Resultado do TratamentoRESUMO
microRNAs (miRs) are essential in the development of heart failure. The aim of this study is to investigate the effect of microRNA-330 (miR-330) on left ventricular remodeling via the TGF-ß1/Smad3 signaling pathway by targeting the sex-determining region Y (SRY) in mice with myocardial ischemia-reperfusion injury (MIRI). Differentially expressed gene (DEG) in myocardial ischemia-reperfusion (IR) was screened out and the miR that targeted the DEG was also predicted and verified. A model of MIRI was established to detect the expression of miR-330, SRY, transforming growth factor-ß (TGF-ß1), and Sekelsky mothers against dpp3 (Smad3). To further investigate the role of miR-330 in MIRI with the involvement of SRY and TGF-ß1/Smad3 signaling pathway, the modeled mice were treated with different mimic, inhibitor, or small interfering RNA (siRNA) to observe the changes of the related gene expression, as well as the myocardial infarction size and volume of myocardial collagen. SRY was screened out and verified as a target gene of miR-330. The MIRI mice showed enlarged myocardial infarction size, increased volume of myocardial collagen, increased expression of miR-330, TGF-ß1 and Smad3, while decreased the expression of SRY. The MIRI mice treated with miR-330 inhibitor showed decreased myocardial infarction size, the volume of myocardial collagen, and expression of TGF-ß1 and Smad3 but promoted expression of SRY. Our findings demonstrated that downregulated miR-330 could suppress left ventricular remodeling to inhibit the activation of the TGF-ß1/Smad3 signaling pathway via negatively targeting of SRY in mice with MIRI. This can be a potential target in the strategy to attenuate patient suffering.
Assuntos
MicroRNAs/metabolismo , Isquemia Miocárdica/patologia , Proteína da Região Y Determinante do Sexo/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Ventricular , Animais , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Isquemia Miocárdica/metabolismo , Distribuição Aleatória , Traumatismo por Reperfusão , Proteína da Região Y Determinante do Sexo/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/genéticaRESUMO
The synthesis of enantiomerically pure 3-aryl substituted indanones is developed using an enantioselective sulfoxide-based Knoevenagel condensation/Nazarov cyclization procedure. After the reductive desulfonation of the methyl para-tolyl sulfoxide-containing chiral auxiliary under mild conditions, selected enantiomerically pure indanone is used for the divergent total syntheses of three resveratrol natural products (+)-isopaucifloralâ F, (+)-quadrangularinâ A, and (+)-pallidol.
Assuntos
Produtos Biológicos/química , Compostos Policíclicos/síntese química , Estilbenos/síntese química , Sulfóxidos/química , Ciclização , Indanos/química , Estrutura Molecular , EstereoisomerismoRESUMO
By the fourth survey of Chinese medicinal resources, new medicinal plants records of 1 family, 2 genera and 6 species were reported in Chongqing.They are Annonaceae, Fissistigma, Monochasma, Sophora tonkinensis, Fissistigma retusum, Monochasma sheareri, Primula ranunculoids, Chirita pinnatifida and Hylotelephium sieboldii.All the voucher specimens are preserved in Herbarium of Chongqing Institute of Medicinal Plant Cultivation.
Assuntos
Plantas Medicinais/classificação , Annonaceae , China , Crassulaceae , Lamiales , Primula , SophoraRESUMO
The two-dimensional (2D) metal-organic framework (MOF) [Cd(TPTZ)(H2O)2(HCOOH)(IPA)2]n (1; TPTZ = {4-[4-(1H-1,2,4-triazol-1-yl)phenyl]phenyl}-1H-1,2,4-triazole, IPA = isophthalic acid) has been constructed with the π-electron-rich aromatic ligand TPTZ, auxiliary ligand IPA, and the metal Cd(2+) ion with a d(10) configuration under solvothermal conditions. Complex 1 exhibits a strong ligand-originated photoluminescence emission, which is selectively sensitive toward electron-deficient nitroaromatic compounds, such as nitrobenzene (NB), 1,3-dinitrobenzene (m-DNB), and 1,4-dinitrobenzene (p-DNB), and nitro-aliphatic compounds, such as nitromethane (NM) and tris(hydroxymethyl)nitromethane. This property makes complex 1 a potential fluorescence sensor for these chemicals. Single-crystal X-ray diffraction studies revealed that dinuclear cadmium building units were further bridged by TPTZ ligands to give a four-connected uninodal net with the Schläfli symbol of [4.6(3).4.6(3).6(2).6(4)].
RESUMO
OBJECTIVE: To make clear the distribution area in Chongqing and community characteristics of Epimedium myrianthum, in order to provide evidence for sustainable utilization of resources. METHODS: Based on field investigation, recorded the GPS, and used the quadrat method to observe and analyze the abundance, frequentness and importance value of Epimedium myrianthum in the seven well-concentrated sample plots of different habitats. RESULTS: Epimedium myrianthum distributed in Changshou County, Dianjiang County, Zhongxian County and Fengdu County of Chongqing at present. The altitude of its distribution areas ranged from 351~663 m. The types of its habitats included coniferous forest, broad-leaved forest and bamboo forest. The plants in these communities were composed of 56 species belonging to 48 genera,33 families. Among associated plants, the dominant species of tree layer were Bambusa distegia, Quercus variabilis , Cupressusfunebris etc. The dominant species of shrub layer were Pittosporum illicioides, Loropetalum chinense, Myrsine africana, Ardisia japonica, Smilax china etc. The dominant species of field layer were Iris japonica, Miscanthus floridulus, Veronicastrum longispicatum, Carex lancifolia, Epimedium myrianthum etc. Species abundance index of D was between 1.1143 to 3.7781 in seven populations,the species in these communities were relatively less,and the numbers of individuals were relatively more. Compared with others, the population of the 3rd and 6th had relatively low index of H' (Shannon-wiener index) and E (Pielou index). The distribution of these species in the community was obviously uneven. The D value,H' value and E value of tree layer species richness were lower than those of shrub layer and field layer, the species diversity was worse. CONCLUSION: It is suggested to incorporate Epimedium myrianthum in the new edition of Chinese Pharmacopeia.
Assuntos
Ecossistema , Epimedium/crescimento & desenvolvimento , Plantas Medicinais/crescimento & desenvolvimento , Altitude , ChinaRESUMO
Background: Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease with unclear pathological mechanisms. In this study, we utilized bidirectional Mendelian randomization (MR) to analyze the relationship between serum metabolites and IPF, and conducted metabolic pathway analysis. Aim: To determine the causal relationship between serum metabolites and IPF using MR analysis. Methods: A two-sample MR analysis was conducted to evaluate the causal relationship between 824 serum metabolites and IPF. The inverse variance weighted (IVW) method was used to estimate the causal relationship between exposure and results. Sensitivity analysis was conducted using MR Egger, weighted median, and maximum likelihood to eliminate pleiotropy. Additionally, metabolic pathway analysis was conducted to identify potential metabolic pathways. Results: We identified 12 serum metabolites (6 risks and 6 protective) associated with IPF from 824 metabolites. Among them, 11 were known and 1 was unknown. 1-Eicosatrienoylglycophorophospholine and 1-myristoylglycophorophospholine were bidirectional MR positive factors, with 1-myristoylglycophorophospholine being a risk factor (1.0013, 1.0097) and 1-eicosatrienoylglycophorine being a protective factor (0.9914, 0.9990). The four lipids (1-linoleoylglycerophoethanolamine*, total cholesterol in large high-density lipoprotein [HDL], cholesterol esters in very large HDL, and phospholipids in very large HDL) and one NA metabolite (degree of unsaturation) were included in the known hazardous metabolites. The known protective metabolites included three types of lipids (carnitine, 1-linoleoylglycerophoethanolamine*, and 1-eicosatrienoylglycerophophophorine), one amino acid (hypoxanthine), and two unknown metabolites (the ratio of omega-6 fatty acids to omega-3 fatty acids, and the ratio of photoshopids to total lipids ratio in chylomicrons and extremely large very low-density lipoprotein [VLDL]). Moreover, sn-Glycerol 3-phosphate and 1-Acyl-sn-glycero-3-phosphocline were found to be involved in the pathogenesis of IPF through metabolic pathways such as Glycerolide metabolism and Glycerophospholipid metabolism. Conclusion: Our study identified 6 causal risks and 6 protective serum metabolites associated with IPF. Additionally, 2 metabolites were found to be involved in the pathogenesis of IPF through metabolic pathways, providing a new perspective for further understanding the metabolic pathway and the pathogenesis of IPF.
RESUMO
BACKGROUND: Despite the exploration of the connections between serum low-density lipoprotein cholesterol (LDL-C) levels and aneurisms in epidemiological studies, causality remains unclear. Therefore, this study aimed to assess the causal impact of LDL-C-lowering targets (HMGCR, PCSK9, NPC1L1, CETP, APOB, and LDLR) on various forms of aneurisms using Mendelian Randomization (MR) analysis. METHODS: Two genetic instruments acted as proxies for exposure to LDL-C-lowering drugs: expression quantitative trait loci of drug target genes and genetic variants linked to LDL-C near drug target genes. Summary-data-based MR (SMR), inverse-variance-weighted MR (IVW-MR), and multivariable MR (MVMR) methods were employed to compute the effect estimates. RESULTS: The SMR analysis revealed substantial associations between increased HMGCR expression and a heightened risk of aortic aneurism (odds ratio [OR] = 1.603, 95% confidence interval [CI] = 1.209-2.124), thoracic aortic aneurism (OR = 1.666, 95% CI = 1.122-2.475), and abdominal aortic aneurism (OR = 1.910, 95% CI = 1.278-2.856). Likewise, IVW-MR analysis demonstrated positive correlations between HMGCR-mediated LDL-C and aortic aneurism (OR = 2.228, 95% CI = 1.702-2.918), thoracic aortic aneurism (OR = 1.751, 95% CI = 1.191-2.575), abdominal aortic aneurism (OR = 4.784, 95% CI = 3.257-7.028), and cerebral aneurism (OR = 1.993, 95% CI = 1.277-3.110). Furthermore, in the MVMR analysis, accounting for body mass index, smoking, and hypertension, a significant positive relationship was established between HMGCR-mediated LDL-C levels and the development of aortic aneurisms, encompassing both thoracic and abdominal subtypes. Similarly, consistent positive associations were observed for PCSK9 and CETP genes, as well as PCSK9-mediated and CETP-mediated LDL-C levels, with the occurrence of aortic aneurism and abdominal aortic aneurism. Nonetheless, the evidence for potential associations between APOB, NPC1L1 and LDLR with specific subtypes of aortic aneurisms lacked consistent support from both SMR and IVW-MR analyses. CONCLUSIONS: Our MR analysis offered compelling evidence of a plausible causal link between HMGCR and an increased risk of aortic aneurism, encompassing both thoracic and abdominal types. These groundbreaking findings further bolster the case for the deployment of HMGCR inhibitors in the treatment of aortic aneurisms, including both thoracic and abdominal variants.
RESUMO
A new species of the firmoss from China, Huperziacrassifolia sp. nov., is described and illustrated based on morphological characters and molecular evidence. The new species resembles species associated with the H.javanica complex, in particular H.javanica based on leaf shape and serrations, but can be easily distinguished by elliptic lanceolate and thick coriaceous leaves, well differentiated seasonal constriction zones, and reflexed leaf margins when get dried. Phylogenomic reconstruction using whole chloroplast genome sequences recovered H.crassifolia as sister to H.sutchueniana and only distantly related to morphological similar species H.javanica, H.nanlingensis, and H.serrata. The genome size 2C = 17.2 pg indicated the new species to be a tetraploid, whereas diploid H.javanica had a genome size of 8.7 pg. Morphological characters, distribution, and conservation status of the new species are also presented.
RESUMO
Previous studies have indicated a potential connection between plasma levels of Dickkopf-1 (DKK1) and platelet-derived growth factor subunit-B (PDGF-B) with the development of atherosclerosis. However, the causal relationship between DKK1, PDGF-B, and the risk of acute myocardial infarction (AMI) is yet to be established. To address this research gap, we conducted Mendelian randomization (MR) and mediation analyses to investigate the potential mediating role of PDGF-B in the association between DKK1 and AMI risk. Summary statistics for DKK1 (n = 3,301) and PDGF-B (n = 21,758) were obtained from the GWAS meta-analyses conducted by Sun et al. and Folkersen et al., respectively. Data on AMI cases (n = 3,927) and controls (n = 333,272) were retrieved from the UK Biobank study. Our findings revealed that genetic predisposition to DKK1 (odds ratio [OR]: 1.00208; 95% confidence interval [CI]: 1.00056-1.00361; P = 0.0072) and PDGF-B (OR: 1.00358; 95% CI: 1.00136-1.00581; P = 0.0015) was associated with an increased risk of AMI. Additionally, genetic predisposition to DKK1 (OR: 1.38389; 95% CI: 1.07066-1.78875; P = 0.0131) was linked to higher PDGF-B levels. Furthermore, our MR mediation analysis revealed that PDGF-B partially mediated the association between DKK1 and AMI risk, with 55.8% of the effect of genetically predicted DKK1 being mediated through genetically predicted PDGF-B. These findings suggest that genetic predisposition to DKK1 is positively correlated with the risk of AMI, and that PDGF-B partially mediates this association. Therefore, DKK1 and PDGF-B may serve as promising targets for the prevention and treatment of AMI.
Assuntos
Aterosclerose , Infarto do Miocárdio , Humanos , Análise da Randomização Mendeliana , Infarto do Miocárdio/genética , Predisposição Genética para Doença , Proteínas Proto-Oncogênicas c-sis , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The immune molecular mechanisms involved in ischaemic cardiomyopathy (ICM) have not been fully elucidated. The current study aimed to elucidate the immune cell infiltration pattern of the ICM and identify key immune-related genes that participate in the pathologic process of the ICM. The differentially expressed genes (DEGs) were identified from two datasets (GSE42955 combined with GSE57338) and the top 8 key DEGs related to ICM were screened using random forest and used to construct the nomogram model. Moreover, the "CIBERSORT" software package was used to determine the proportion of infiltrating immune cells in the ICM. A total of 39 DEGs (18 upregulated and 21 downregulated) were identified in the current study. Four upregulated DEGs, including MNS1, FRZB, OGN, and LUM, and four downregulated DEGs, SERP1NA3, RNASE2, FCN3 and SLCO4A1, were identified by the random forest model. The nomogram constructed based on the above 8 key genes suggested a diagnostic value of up to 99% to distinguish the ICM from healthy participants. Meanwhile, most of the key DEGs presented prominent interactions with immune cell infiltrates. The RT-qPCR results suggested that the expression levels of MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 between the ICM and control groups were consistent with the bioinformatic analysis results. These results suggested that immune cell infiltration plays a critical role in the occurrence and progression of ICM. Several key immune-related genes, including the MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 genes, are expected to be reliable serum markers for the diagnosis of ICM and potential molecular targets for ICM immunotherapy.
Assuntos
Cardiomiopatias , Isquemia Miocárdica , Humanos , Nomogramas , Algoritmo Florestas Aleatórias , Isquemia Miocárdica/genética , Biologia Computacional , Lectinas , Peptídeos e Proteínas de Sinalização IntercelularRESUMO
Epidemiological investigations have indicated a correlation between elevated plasma levels of Dickkopf-related protein 1 (DKK1) and the presence of atherosclerosis. However, the exact causal relationship of DKK1 with the development of coronary artery disease (CAD) and ischemic stroke (IS) remains unclear. To address this gap, our study aimed to explore their causal association using a two-sample Mendelian randomization (MR) approach. We obtained summary statistics from genome-wide association studies (GWAS) meta-analyses conducted by Folkersen et al. and Nikpay et al., which included data from 21,758 individuals for DKK1 and 42,096 cases of CAD. Additionally, we obtained data from the FinnGen biobank analysis round 5, which included 10,551 cases of IS. Eight MR methods were employed to estimate causal effects and detect directional pleiotropy. Our findings demonstrated that genetic liability to DKK1 was associated with increased risks of CAD (odds ratio [OR]: 1.087; 95% confidence interval [CI]: 1.024-1.154; P = 0.006) and IS (OR: 1.096; 95% CI: 1.004-1.195; P = 0.039). These results establish a causal link between genetic liability to DKK1 and elevated risks of CAD and IS. Consequently, DKK1 may represent a promising therapeutic target for the prevention and treatment of CAD and IS.
RESUMO
Lipid metabolism plays an essential role in the genesis and progress of acute myocardial infarction (AMI). Herein, we identified and verified latent lipid-related genes involved in AMI by bioinformatic analysis. Lipid-related differentially expressed genes (DEGs) involved in AMI were identified using the GSE66360 dataset from the Gene Expression Omnibus (GEO) database and R software packages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to analyze lipid-related DEGs. Lipid-related genes were identified by two machine learning techniques: least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE). The receiver operating characteristic (ROC) curves were used to descript diagnostic accuracy. Furthermore, blood samples were collected from AMI patients and healthy individuals, and real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine the RNA levels of four lipid-related DEGs. Fifty lipid-related DEGs were identified, 28 upregulated and 22 downregulated. Several enrichment terms related to lipid metabolism were found by GO and KEGG enrichment analyses. After LASSO and SVM-RFE screening, four genes (ACSL1, CH25H, GPCPD1, and PLA2G12A) were identified as potential diagnostic biomarkers for AMI. Moreover, the RT-qPCR analysis indicated that the expression levels of four DEGs in AMI patients and healthy individuals were consistent with bioinformatics analysis results. The validation of clinical samples suggested that 4 lipid-related DEGs are expected to be diagnostic markers for AMI and provide new targets for lipid therapy of AMI.
Assuntos
Biologia Computacional , Infarto do Miocárdio , Humanos , Biomarcadores , Coenzima A Ligases/genética , Bases de Dados Factuais , Lipídeos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Fosfolipases , Fosfolipases A2 do Grupo I/metabolismoRESUMO
The role of m6A in the regulation of the immune microenvironment in atrial fibrillation (AF) remains unclear. This study systematically evaluated the RNA modification patterns mediated by differential m6A regulators in 62 AF samples, identified the pattern of immune cell infiltration in AF and identified several immune-related genes associated with AF. A total of six key differential m6A regulators between healthy subjects and AF patients were identified by the random forest classifier. Three distinct RNA modification patterns (m6A cluster-A, -B and -C) among AF samples were identified based on the expression of 6 key m6A regulators. Differential infiltrating immune cells and HALLMARKS signaling pathways between normal and AF samples as well as among samples with three distinct m6A modification patterns were identified. A total of 16 overlapping key genes were identified by weighted gene coexpression network analysis (WGCNA) combined with two machine learning methods. The expression levels of the NCF2 and HCST genes were different between controls and AF patient samples as well as among samples with the distinct m6A modification patterns. RT-qPCR also proved that the expression of NCF2 and HCST was significantly increased in AF patients compared with control participants. These results suggested that m6A modification plays a key role in the complexity and diversity of the immune microenvironment of AF. Immunotyping of patients with AF will help to develop more accurate immunotherapy strategies for those with a significant immune response. The NCF2 and HCST genes may be novel biomarkers for the accurate diagnosis and immunotherapy of AF.
Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/genética , Metilação , RNA , Redes Reguladoras de Genes , Voluntários SaudáveisRESUMO
The role of RNA N6-methyladenosine (m6A) modification in the regulation of the immune microenvironment in ischaemic cardiomyopathy (ICM) remains largely unclear. This study first identified differential m6A regulators between ICM and healthy samples, and then systematically evaluated the effects of m6A modification on the characteristics of the immune microenvironment in ICM, including the infiltration of immune cells, the human leukocyte antigen (HLA) gene, and HALLMARKS pathways. A total of seven key m6A regulators, including WTAP, ZCH3H13, YTHDC1, FMR1, FTO, RBM15 and YTHDF3, were identified using a random forest classifier. A diagnostic nomogram based on these seven key m6A regulators could effectively distinguish patients with ICM from healthy subjects. We further identified two distinct m6A modification patterns (m6A cluster-A and m6A cluster-B) that are mediated by these seven regulators. Meanwhile, we also noted that one m6A regulator, WTAP, was gradually upregulated, while the others were gradually downregulated in the m6A cluster-A vs. m6A cluster-B vs. healthy subjects. In addition, we observed that the degree of infiltration of the activated dendritic cells, macrophages, natural killer (NK) T cells, and type-17 T helper (Th17) cells gradually increased in m6A cluster-A vs. m6A cluster-B vs. healthy subjects. Furthermore, m6A regulators, including FTO, YTHDC1, YTHDF3, FMR1, ZC3H13, and RBM15 were significantly negatively correlated with the above-mentioned immune cells. Additionally, several differential HLA genes and HALLMARKS signalling pathways between the m6A cluster-A and m6A cluster-B groups were also identified. These results suggest that m6A modification plays a key role in the complexity and diversity of the immune microenvironment in ICM, and seven key m6A regulators, including WTAP, ZCH3H13, YTHDC1, FMR1, FTO, RBM15, and YTHDF3, may be novel biomarkers for the accurate diagnosis of ICM. Immunotyping of patients with ICM will help to develop immunotherapy strategies with a higher level of accuracy for patients with a significant immune response.
Assuntos
Cardiomiopatias , Isquemia Miocárdica , Humanos , Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Proteína do X Frágil da Deficiência Intelectual , Metilação , RNARESUMO
Interlayer magnetic couplings of low-dimensional magnets have significantly dominated magnetic behavior through skillful regulation of interlayer interacting forces. To identify interaction-force-regulated interlayer magnetic communications, two air-stable Co(II)-based coordination polymers (CPs), a well-isolated layered structure with approximately 12.6 Å interlayer separation and a carboxylate-extended three-dimensional framework with an inter-ribbon distance of 5.8 Å, have been solvothermally fabricated by varying polycarboxylate mediators in a ternary CoII-tetrazolate-carboxylate system. The layered CP with antiparallel-arranged {Co2(COO)2}n chains interconnected only via cyclic tetrazolyl linkages behaves as a spin-canted antiferromagnet with a Néel temperature of 2.6 K, due to strong intralayer antiferromagnetic couplings and negligible interlayer magnetic interactions. In contrast, the compact three-dimensional framework with corner-sharing Δ-ribbons tightly aggregated through µ2-η1:η1-COO- is a field-induced metamagnet from a canted antiferromagnet to a weak ferromagnet with a small critical field of Hc = 90 Oe. Apparently, these interesting magnetic responses reveal the importance of an interacting force from the magnetic subunits for the magnetic behavior of the molecular magnet, greatly enriching the magnetostructural correlations of transition-metal-based molecular magnets.