Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 152(3): 599-611, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374352

RESUMO

Tumor cells have high-energetic and anabolic needs and are known to adapt their metabolism to be able to survive and keep proliferating under conditions of nutrient stress. We show that PKCζ deficiency promotes the plasticity necessary for cancer cells to reprogram their metabolism to utilize glutamine through the serine biosynthetic pathway in the absence of glucose. PKCζ represses the expression of two key enzymes of the pathway, PHGDH and PSAT1, and phosphorylates PHGDH at key residues to inhibit its enzymatic activity. Interestingly, the loss of PKCζ in mice results in enhanced intestinal tumorigenesis and increased levels of these two metabolic enzymes, whereas patients with low levels of PKCζ have a poor prognosis. Furthermore, PKCζ and caspase-3 activities are correlated with PHGDH levels in human intestinal tumors. Taken together, this demonstrates that PKCζ is a critical metabolic tumor suppressor in mouse and human cancer.


Assuntos
Adenocarcinoma/metabolismo , Adenoma/metabolismo , Neoplasias do Colo/metabolismo , Proteína Quinase C/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Vias Biossintéticas , Transformação Celular Neoplásica , Glucose/metabolismo , Humanos , Camundongos , Serina/biossíntese , Organismos Livres de Patógenos Específicos , Estresse Fisiológico
2.
Br J Cancer ; 129(5): 811-818, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488446

RESUMO

BACKGROUND: The first-in-class brain-penetrating synthetic hydroxylated lipid idroxioleic acid (2-OHOA; sodium 2-hydroxyoleate), activates sphingomyelin synthase expression and regulates membrane-lipid composition and mitochondrial energy production, inducing cancer cell autophagy. We report the findings of a multicentric first-in-human Phase 1/2A trial (NCT01792310) of 2-OHOA, identifying the maximum tolerated dose (MTD) and assessing safety and preliminary efficacy. METHODS: We performed an open-label, non-randomised trial to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics and anti-tumour activity of daily oral treatment with 2-OHOA monotherapy (BID/TID) in 54 patients with glioma and other advanced solid tumours. A dose-escalation phase using a standard 3 + 3 design was performed to determine safety and tolerability. This was followed by two expansion cohorts at the MTD to determine the recommended Phase-2 dose (RP2D). RESULTS: In total, 32 recurrent patients were enrolled in the dose-escalation phase (500-16,000 mg/daily). 2-OHOA was rapidly absorbed with dose-proportional exposure. Treatment was well-tolerated overall, with reversible grade 1-2 nausea, vomiting, and diarrhoea as the most common treatment-related adverse events (AEs). Four patients had gastrointestinal dose-limiting toxicities (DLTs) of nausea, vomiting, diarrhoea (three patients at 16,000 mg and one patient at 12,000 mg), establishing an RP2D at 12,000 mg/daily. Potential activity was seen in patients with recurrent high-grade gliomas (HGG). Of the 21 patients with HGG treated across the dose escalation and expansion, 5 (24%) had the clinical benefit (RANO CR, PR and SD >6 cycles) with one exceptional response lasting >2.5 years. CONCLUSIONS: 2-OHOA demonstrated a good safety profile and encouraging activity in this difficult-to-treat malignant brain-tumour patient population, placing it as an ideal potential candidate for the treatment of glioma and other solid tumour malignancies. CLINICAL TRIAL REGISTRATION: EudraCT registration number: 2012-001527-13; Clinicaltrials.gov registration number: NCT01792310.


Assuntos
Glioma , Neoplasias , Humanos , Diarreia , Glioma/tratamento farmacológico , Dose Máxima Tolerável , Náusea , Recidiva Local de Neoplasia , Neoplasias/tratamento farmacológico , Esfingolipídeos/uso terapêutico , Vômito
3.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077299

RESUMO

Pancreatic cancer has a high mortality rate due to its aggressive nature and high metastatic rate. When coupled to the difficulties in detecting this type of tumor early and the lack of effective treatments, this cancer is currently one of the most important clinical challenges in the field of oncology. Melitherapy is an innovative therapeutic approach that is based on modifying the composition and structure of cell membranes to treat different diseases, including cancers. In this context, 2-hydroxycervonic acid (HCA) is a melitherapeutic agent developed to combat pancreatic cancer cells, provoking the programmed cell death by apoptosis of these cells by inducing ER stress and triggering the production of ROS species. The efficacy of HCA was demonstrated in vivo, alone and in combination with gemcitabine, using a MIA PaCa-2 cell xenograft model of pancreatic cancer in which no apparent toxicity was evident. HCA is metabolized by α-oxidation to C21:5n-3 (heneicosapentaenoic acid), which in turn also showed anti-proliferative effect in these cells. Given the unmet clinical needs associated with pancreatic cancer, the data presented here suggest that the use of HCA merits further study as a potential therapy for this condition.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias Pancreáticas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ácidos Docosa-Hexaenoicos/uso terapêutico , Humanos , Hidroxiácidos , Imidazóis , Neoplasias Pancreáticas/patologia , Sulfonamidas , Tiofenos , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230887

RESUMO

The cell membrane contains a variety of receptors that interact with signaling molecules. However, agonist-receptor interactions not always activate a signaling cascade. Amphitropic membrane proteins are required for signal propagation upon ligand-induced receptor activation. These proteins localize to the plasma membrane or internal compartments; however, they are only activated by ligand-receptor complexes when both come into physical contact in membranes. These interactions enable signal propagation. Thus, signals may not propagate into the cell if peripheral proteins do not co-localize with receptors even in the presence of messengers. As the translocation of an amphitropic protein greatly depends on the membrane's lipid composition, regulation of the lipid bilayer emerges as a novel therapeutic strategy. Some of the signals controlled by proteins non-permanently bound to membranes produce dramatic changes in the cell's physiology. Indeed, changes in membrane lipids induce translocation of dozens of peripheral signaling proteins from or to the plasma membrane, which controls how cells behave. We called these changes "lipid switches", as they alter the cell's status (e.g., proliferation, differentiation, death, etc.) in response to the modulation of membrane lipids. Indeed, this discovery enables therapeutic interventions that modify the bilayer's lipids, an approach known as membrane-lipid therapy (MLT) or melitherapy.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Animais , Fenômenos Biofísicos , Doença , Humanos , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Transdução de Sinais
5.
Biochim Biophys Acta Biomembr ; 1859(9 Pt B): 1526-1535, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28411171

RESUMO

G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (HII) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi1 monomers had a higher affinity for lamellar phases, while Gßγ and Gαßγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.


Assuntos
Proteínas de Ligação ao GTP/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Diterpenos/farmacologia , Proteínas de Membrana/química , Multimerização Proteica
6.
Biochim Biophys Acta ; 1851(11): 1511-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26253820

RESUMO

G proteins are fundamental elements in signal transduction involved in key cell responses, and their interactions with cell membrane lipids are critical events whose nature is not fully understood. Here, we have studied how the presence of myristic and palmitic acid moieties affects the interaction of the Gαi1 protein with model and biological membranes. For this purpose, we quantified the binding of purified Gαi1 protein and Gαi1 protein acylation mutants to model membranes, with lipid compositions that resemble different membrane microdomains. We observed that myristic and palmitic acids not only act as membrane anchors but also regulate Gαi1 subunit interaction with lipids characteristics of certain membrane microdomains. Thus, when the Gαi1 subunit contains both fatty acids it prefers raft-like lamellar membranes, with a high sphingomyelin and cholesterol content and little phosphatidylserine and phosphatidylethanolamine. By contrast, the myristoylated and non-palmitoylated Gαi1 subunit prefers other types of ordered lipid microdomains with higher phosphatidylserine content. These results in part explain the mobility of Gαi1 protein upon reversible palmitoylation to meet one or another type of signaling protein partner. These results also serve as an example of how membrane lipid alterations can change membrane signaling or how membrane lipid therapy can regulate the cell's physiology.


Assuntos
Membrana Celular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Membrana Celular/química , Colesterol/química , Colesterol/metabolismo , Sequência Conservada , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Expressão Gênica , Lipoilação , Microdomínios da Membrana , Dados de Sequência Molecular , Ácidos Mirísticos/química , Ácidos Mirísticos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Células Sf9 , Transdução de Sinais , Esfingomielinas/química , Esfingomielinas/metabolismo , Spodoptera
7.
Biochim Biophys Acta ; 1838(6): 1619-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24525074

RESUMO

This review summarizes the cellular bases of the effects of NaCHOleate (2-hydroxyoleic acid; 2OHOA; Minerval) against glioma and other types of tumors. NaCHOleate, activates sphingomyelin synthase (SGMS) increasing the levels of cell membrane sphingomyelin (SM) and diacylglycerol (DAG) together with reductions of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The increases in the membrane levels of NaCHOleate itself and of DAG induce a translocation and overexpression of protein kinase C (PKC) and subsequent reductions of Cyclin D, cyclin-dependent kinases 4 and 6 (CDKs 4 and 6), hypophosphorylation of the retinoblastoma protein, inhibition of E2F1 and knockdown of dihydrofolate reductase (DHFR) impairing DNA synthesis. In addition in some cancer cells, the increases in SM are associated with Fas receptor (FasR) capping and ligand-free induction of apoptosis. In glioma cell lines, the increases in SM are associated with the inhibition of the Ras/MAPK and PI3K/Akt pathways, in association with p27Kip1 overexpression. Finally, an analysis of the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database for glioma patient survival shows that the weight of SM-related metabolism gene expression in glioma patients' survival is similar to glioma-related genes. Due to its low toxicity and anti-tumoral effect in cell and animal models its status as an orphan drug for glioma treatment by the European Medicines Agency (EMA) was recently acknowledged and a phase 1/2A open label, non-randomized study was started in patients with advanced solid tumors including malignant glioma. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glioma/tratamento farmacológico , Lipídeos de Membrana/química , Ácidos Oleicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Glioma/metabolismo , Glioma/patologia , Humanos , Lipídeos de Membrana/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(22): 8489-94, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586083

RESUMO

Despite recent advances in the development of new cancer therapies, the treatment options for glioma remain limited, and the survival rate of patients has changed little over the past three decades. Here, we show that 2-hydroxyoleic acid (2OHOA) induces differentiation and autophagy of human glioma cells. Compared to the current reference drug for this condition, temozolomide (TMZ), 2OHOA combated glioma more efficiently and, unlike TMZ, tumor relapse was not observed following 2OHOA treatment. The novel mechanism of action of 2OHOA is associated with important changes in membrane-lipid composition, primarily a recovery of sphingomyelin (SM) levels, which is markedly low in glioma cells before treatment. Parallel to membrane-lipid regulation, treatment with 2OHOA induced a dramatic translocation of Ras from the membrane to the cytoplasm, which inhibited the MAP kinase pathway, reduced activity of the PI3K/Akt pathway, and downregulated Cyclin D-CDK4/6 proteins followed by hypophosphorylation of the retinoblastoma protein (RB). These regulatory effects were associated with induction of glioma cell differentiation into mature glial cells followed by autophagic cell death. Given its high efficacy, low toxicity, ease of oral administration, and good distribution to the brain, 2OHOA constitutes a new and potentially valuable therapeutic tool for glioma patients.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Ácidos Oleicos/farmacologia , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Glioma/metabolismo , Glioma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Ácidos Oleicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temozolomida , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
9.
Cell Oncol (Dordr) ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400678

RESUMO

PURPOSE: Glioblastomas (GBMs) are highly treatment-resistant and aggressive brain tumors. 2OHOA, which is currently running a phase IIB/III clinical trial for newly diagnosed GBM patients, was developed in the context of melitherapy. This therapy focuses on the regulation of the membrane's structure and organization with the consequent modulation of certain cell signals to revert the pathological state in several disorders. Notch signaling has been associated with tumorigenesis and cell survival, potentially driving the pathogenesis of GBM. The current study aims to determine whether 2OHOA modulates the Notch pathway as part of its antitumoral mechanism. METHODS: 2OHOA's effect was evaluated on different components of the pathway by Western blot, Q-PCR, and confocal microscopy. Notch receptor processing was analyzed by subcellular fractionation and colocalization studies. Furin activity was evaluated under cleavage of its substrate by fluorescence assays and its binding affinity to 2OHOA was determined by surface plasmon resonance. RESULTS: We found that 2OHOA inhibits Notch2 and Notch3 signaling by dual mechanism. Notch2 inhibition is unleashed by impairment of its processing through the inactivation of furin activity by physical association. Instead, Notch3 is transcriptionally downregulated leading to a lower activation of the pathway. Moreover, we also found that HES1 overexpression highlighted the relevance of this pathway in the 2OHOA pharmacological efficacy. CONCLUSION: These findings report that the inhibition of Notch signaling by 2OHOA plays a role in its anti-tumoral activity, an effect that may be driven through direct inhibition of furin, characterizing a novel target of this bioactive lipid to treat GBM.

10.
Biomedicines ; 11(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37239036

RESUMO

Pediatric neurological tumors are a heterogeneous group of cancers, many of which carry a poor prognosis and lack a "standard of care" therapy. While they have similar anatomic locations, pediatric neurological tumors harbor specific molecular signatures that distinguish them from adult brain and other neurological cancers. Recent advances through the application of genetics and imaging tools have reshaped the molecular classification and treatment of pediatric neurological tumors, specifically considering the molecular alterations involved. A multidisciplinary effort is ongoing to develop new therapeutic strategies for these tumors, employing innovative and established approaches. Strikingly, there is increasing evidence that lipid metabolism is altered during the development of these types of tumors. Thus, in addition to targeted therapies focusing on classical oncogenes, new treatments are being developed based on a broad spectrum of strategies, ranging from vaccines to viral vectors, and melitherapy. This work reviews the current therapeutic landscape for pediatric brain tumors, considering new emerging treatments and ongoing clinical trials. In addition, the role of lipid metabolism in these neoplasms and its relevance for the development of novel therapies are discussed.

12.
Am J Pathol ; 179(3): 1494-503, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763261

RESUMO

Chitinase 3-like-1 (CHI3L1/YKL-40) is a protein secreted from restricted cell types including colonic epithelial cells (CECs) and macrophages. CHI3L1 is an inflammation-associated molecule, and its expression is enhanced in persons with colitis and colon cancer. The biological function of CHI3L1 on CECs is unclear. In this study, we investigated the role of CHI3L1 on CECs during the development of colitis-associated neoplasia. We analyzed colonic samples obtained from healthy persons and from persons with ulcerative colitis with or without premalignant or malignant changes. DNA microarray and RT-PCR analyses significantly increased CHI3L1 expression in non-dysplastic mucosa from patients with inflammatory bowel disease (IBD) who had dysplasia/adenocarcinoma compared with that in healthy persons and in patients with IBD who did not have dysplasia. As determined by IHC, CHI3L1 was expressed in specific cell types in the crypts of colonic biopsies obtained from patients with ulcerative colitis who have remote dysplasia. Purified CHI3L1 efficiently activated the NF-κB signaling pathway and enhanced the secretion of IL-8 and TNF-α in SW480 human colon cancer cells. In addition, colon cancer cell proliferation and migration were significantly promoted in response to CHI3L1 in these cells. In summary, CHI3L1 may contribute to the proliferation, migration, and neoplastic progression of CECs under inflammatory conditions and could be a useful biomarker for neoplastic changes in patients with IBD.


Assuntos
Adipocinas/metabolismo , Biomarcadores Tumorais/metabolismo , Colite Ulcerativa/diagnóstico , Neoplasias Colorretais/diagnóstico , Lectinas/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Proteína 1 Semelhante à Quitinase-3 , Colo/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Feminino , Humanos , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/diagnóstico , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Lesões Pré-Cancerosas/diagnóstico , Fator de Necrose Tumoral alfa/metabolismo
13.
Proc Natl Acad Sci U S A ; 106(33): 13754-8, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666584

RESUMO

alpha-Hydroxy-9-cis-octadecenoic acid, a synthetic fatty acid that modifies the composition and structure of lipid membranes. 2-Hydroxyoleic acid (HOA) generated interest due to its potent, yet nontoxic, anticancer activity. It induces cell cycle arrest in human lung cancer (A549) cells and apoptosis in human leukemia (Jurkat) cells. These two pathways may explain how HOA induces regression of a variety of cancers. We showed that HOA repressed the expression of dihydrofolate reductase (DHFR), the enzyme responsible for tetrahydrofolate (THF) synthesis. Folinic acid, which readily produces THF without the participation of DHFR, reverses the antitumor effects of HOA in A549 and Jurkat cells, as well as the inhibitory influence on cyclin D and cdk2 in A549 cells, and on DNA and PARP degradation in Jurkat cells. This effect was very specific, because either elaidic acid (an analog of HOA) or other lipids, failed to alter A549 or Jurkat cell growth. THF is a cofactor necessary for DNA synthesis. Thus, impairment of DNA synthesis appears to be a common mechanism involved in the different responses elicited by cancer cells following treatment with HOA, namely cell cycle arrest or apoptosis. Compared with other antifolates, such as methotrexate, HOA did not directly inhibit DHFR but rather, it repressed its expression, a mode of action that offers certain therapeutic advantages. These results not only demonstrate the effect of a fatty acid on the expression of DHFR, but also emphasize the potential of HOA to be used as a wide-spectrum drug against cancer.


Assuntos
Antineoplásicos/farmacologia , Ácidos Oleicos/química , Tetra-Hidrofolato Desidrogenase/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ácidos Graxos/química , Antagonistas do Ácido Fólico/farmacologia , Humanos , Células Jurkat , Leucovorina/química , Lipídeos/química , Metotrexato/farmacologia , Neoplasias/tratamento farmacológico , Ácidos Oleicos/farmacologia , Especificidade por Substrato , Tetra-Hidrofolato Desidrogenase/química
14.
Cells ; 11(3)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159387

RESUMO

The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) has been extensively investigated as a cancer therapy mainly based on its regulation of membrane lipid composition and structure, activating various cell fate pathways. We discovered, additionally, that 2OHOA can uncouple oxidative phosphorylation, but this has never been demonstrated mechanistically. Here, we explored the effect of 2OHOA on mitochondria isolated by ultracentrifugation from U118MG glioblastoma cells. Mitochondria were analyzed by shotgun lipidomics, molecular dynamic simulations, spectrophotometric assays for determining respiratory complex activity, mass spectrometry for assessing beta oxidation and Seahorse technology for bioenergetic profiling. We showed that the main impact of 2OHOA on mitochondrial lipids is their hydroxylation, demonstrated by simulations to decrease co-enzyme Q diffusion in the liquid disordered membranes embedding respiratory complexes. This decreased co-enzyme Q diffusion can explain the inhibition of disjointly measured complexes I-III activity. However, it doesn't explain how 2OHOA increases complex IV and state 3 respiration in intact mitochondria. This increased respiration probably allows mitochondrial oxidative phosphorylation to maintain ATP production against the 2OHOA-mediated inhibition of glycolytic ATP production. This work correlates 2OHOA function with its modulation of mitochondrial lipid composition, reflecting both 2OHOA anticancer activity and adaptation to it by enhancement of state 3 respiration.


Assuntos
Antineoplásicos , Trifosfato de Adenosina , Antineoplásicos/farmacologia , Mitocôndrias/metabolismo , Ácidos Oleicos , Respiração
15.
Clin Immunol ; 140(3): 268-75, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21546314

RESUMO

Host-microbial interactions play a key role during the development of colitis. We have previously shown that chinase 3-like 1 (CHI3L1) is an inducible molecule overexpressed in colonic epithelial cells (CECs) under inflammatory conditions. In this study, we found that chitin-binding motif (CBM) of CHI3L1 is specifically associated with the CHI3L1-mediated activation of the Akt-signaling in CEC by transfecting the CBM-mutant CHI3L1 vectors in SW480 CECs. Downstream, CHI3L1 enhanced the secretion of IL-8 and TNFα in a dose-dependent manner. We previously show that 325 through 339 amino-acids in CBM are crucial for the biological function of CHI3L1. Here we demonstrated that 325th-339th residues of CBM in CHI3L1 is a critical region for the activation of Akt, IL-8 production, and for a specific cellular localization of CHI3L1. In conclusion, CBM region of CHI3L1 is critical in activating Akt signaling in CECs, and the activation may be associated with the development of chronic colitis.


Assuntos
Colo/enzimologia , Glicoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteína 1 Semelhante à Quitinase-3 , Células Epiteliais/metabolismo , Humanos , Interleucina-8/biossíntese , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
16.
Front Physiol ; 12: 782525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126175

RESUMO

Cell proliferation in pancreatic cancer is determined by a complex network of signaling pathways. Despite the extensive understanding of these protein-mediated signaling processes, there are no significant drug discoveries that could considerably improve a patient's survival. However, the recent understanding of lipid-mediated signaling gives a new perspective on the control of the physiological state of pancreatic cells. Lipid signaling plays a major role in the induction of cytocidal autophagy and can be exploited using synthetic lipids to induce cell death in pancreatic cancer cells. In this work, we studied the activity of a synthetic lipid, tri-2-hydroxyarachidonein (TGM4), which is a triacylglycerol mimetic that contains three acyl moieties with four double bonds each, on cellular and in vivo models of pancreatic cancer. We demonstrated that TGM4 inhibited proliferation of Mia-PaCa-2 (human pancreatic carcinoma) and PANC-1 (human pancreatic carcinoma of ductal cells) in in vitro models and in an in vivo xenograft model of Mia-PaCa-2 cells. In vitro studies demonstrated that TGM4 induced cell growth inhibition paralleled with an increased expression of PARP and CHOP proteins together with the presence of sub-G0 cell cycle events, indicating cell death. This cytocidal effect was associated with elevated ER stress or autophagy markers such as BIP, LC3B, and DHFR. In addition, TGM4 activated peroxisome proliferator-activated receptor gamma (PPAR-γ), which induced elevated levels of p-AKT and downregulation of p-c-Jun. We conclude that TGM4 induced pancreatic cell death by activation of cytocidal autophagy. This work highlights the importance of lipid signaling in cancer and the use of synthetic lipid structures as novel and potential approaches to treat pancreatic cancer and other neoplasias.

17.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34503102

RESUMO

Glioblastoma (GBM) is the most common and aggressive type of primary brain tumor in adults, and the median survival of patients with GBM is 14.5 months. Melitherapy is an innovative therapeutic approach to treat different diseases, including cancer, and it is based on the regulation of cell membrane composition and structure, which modulates relevant signal pathways. Here, we have tested the effects of 2-hydroxycervonic acid (HCA) on GBM cells and xenograft tumors. HCA was taken up by cells and it compromised the survival of several human GBM cell lines in vitro, as well as the in vivo growth of xenograft tumors (mice) derived from these cells. HCA appeared to enhance ER stress/UPR signaling, which consequently induced autophagic cell death of the GBM tumor cells. This negative effect of HCA on GBM cells may be mediated by the JNK/c-Jun/CHOP/BiP axis, and it also seems to be provoked by the cellular metabolite of HCA, C21:5n-3 (heneicosapentaenoic acid). These results demonstrate the efficacy of the melitherapeutic treatment used and the potential of using C21:5n-3 as an efficacy biomarker for this treatment. Given the safety profile in animal models, the data presented here provide evidence that HCA warrants further clinical study as a potential therapy for GBM, currently an important unmet medical need.

18.
Membranes (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34940418

RESUMO

Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).

19.
J Cell Mol Med ; 14(3): 659-70, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19413889

RESUMO

Minerval is an oleic acid synthetic analogue that impairs lung cancer (A549) cell proliferation upon modulation of the plasma membrane lipid structure and subsequent regulation of protein kinase C localization and activity. However, this mechanism does not fully explain the regression of tumours induced by this drug in animal models of cancer. Here we show that Minerval also induced apoptosis in Jurkat T-lymphoblastic leukaemia and other cancer cells. Minerval inhibited proliferation of Jurkat cells, concomitant with a decrease of cyclin D3 and cdk2 (cyclin-dependent kinase2). In addition, the changes that induced on Jurkat cell membrane organization caused clustering (capping) of the death receptor Fas (CD95), caspase-8 activation and initiation of the extrinsic apoptosis pathway, which finally resulted in programmed cell death. The present results suggest that the intrinsic pathway (associated with caspase-9 function) was activated downstream by caspase-8. In a xenograft model of human leukaemia, Minerval also inhibited tumour progression and induced tumour cell death. Studies carried out in a wide variety of cancer cell types demonstrated that apoptosis was the main molecular mechanism triggered by Minerval. This is the first report on the pro-apoptotic activity of Minerval, and in part explains the effectiveness of this non-toxic anticancer drug and its wide spectrum against different types of cancer.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia Experimental/tratamento farmacológico , Ácidos Oleicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D3/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Células HL-60 , Células HT29 , Células HeLa , Humanos , Immunoblotting , Células Jurkat , Leucemia Experimental/patologia , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Masculino , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Tempo
20.
Front Cell Dev Biol ; 8: 164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292781

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with as yet no efficient therapies, the pathophysiology of which is still largely unclear. Many drugs and therapies have been designed and developed in the past decade to stop or slow down this neurodegenerative process, although none has successfully terminated a phase-III clinical trial in humans. Most therapies have been inspired by the amyloid cascade hypothesis, which has more recently come under question due to the almost complete failure of clinical trials of anti-amyloid/tau therapies to date. To shift the perspective for the design of new AD therapies, membrane lipid therapy has been tested, which assumes that brain lipid alterations lie upstream in the pathophysiology of AD. A hydroxylated derivative of docosahexaenoic acid was used, 2-hydroxy-docosahexaenoic acid (DHA-H), which has been tested in a number of animal models and has shown efficacy against hallmarks of AD pathology. Here, for the first time, DHA-H is shown to undergo α-oxidation to generate the heneicosapentaenoic acid (HPA, C21:5, n-3) metabolite, an odd-chain omega-3 polyunsaturated fatty acid that accumulates in cell cultures, mouse blood plasma and brain tissue upon DHA-H treatment, reaching higher concentrations than those of DHA-H itself. Interestingly, DHA-H does not share metabolic routes with its natural analog DHA (C22:6, n-3) but rather, DHA-H and DHA accumulate distinctly, both having different effects on cell fatty acid composition. This is partly explained because DHA-H α-hydroxyl group provokes steric hindrance on fatty acid carbon 1, which in turn leads to diminished incorporation into cell lipids and accumulation as free fatty acid in cell membranes. Finally, DHA-H administration to mice elevated the brain HPA levels, which was directly and positively correlated with cognitive spatial scores in AD mice, apparently in the absence of DHA-H and without any significant change in brain DHA levels. Thus, the evidence presented in this work suggest that the metabolic conversion of DHA-H into HPA could represent a key event in the therapeutic effects of DHA-H against AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA