Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890872

RESUMO

Nowadays, the grinding process is mostly automatic, yet post-grinding quality inspection is mostly carried out manually. Although the conventional inspection technique may have cumbersome setup and tuning processes, the data-driven model, with its vision-based dataset, provides an opportunity to automate the inspection process. In this study, a convolutional neural network technique with transfer learning is proposed for three kinds of inspections based on 750-1000 surface raw images of the ground workpieces in each task: classifying the grit number of the abrasive belt that grinds the workpiece, estimating the surface roughness of the ground workpiece, and classifying the degree of wear of the abrasive belts. The results show that a deep convolutional neural network can recognize the texture on the abrasive surface images and that the classification model can achieve an accuracy of 0.9 or higher. In addition, the external coaxial white light was the most suitable light source among the three tested light sources: the external coaxial white light, the high-angle ring light, and the external coaxial red light. Finally, the model that classifies the degree of wear of the abrasive belts can also be utilized as the abrasive belt life estimator.

2.
Sensors (Basel) ; 18(2)2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473877

RESUMO

Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM) and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM) which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe). Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t|) °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR) technique and implemented into the real-time embedded system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA