Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chemistry ; 30(15): e202304050, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38197477

RESUMO

A low pKa (5.2), high polarizable volume (3.8 Å), and proneness to oxidation under ambient conditions make selenocysteine (Sec, U) a unique, natural reactive handle present in most organisms across all domains of life. Sec modification still has untapped potential for site-selective protein modification and probing. Herein we demonstrate the use of a cyclometalated gold(III) compound, [Au(bnpy)Cl2 ], in the arylation of diselenides of biological significance, with a scope covering small molecule models, peptides, and proteins using a combination of multinuclear NMR (including 77 Se NMR), and LC-MS. Diphenyl diselenide (Ph-Se)2 and selenocystine, (Sec)2 , were used for reaction optimization. This approach allowed us to demonstrate that an excess of diselenide (Au/Se-Se) and an increasing water percentage in the reaction media enhance both the conversion and kinetics of the C-Se coupling reaction, a combination that makes the reaction biocompatible. The C-Se coupling reaction was also shown to happen for the diselenide analogue of the cyclic peptide vasopressin ((Se-Se)-AVP), and the Bos taurus glutathione peroxidase (GPx1) enzyme in ammonium acetate (2 mM, pH=7.0). The reaction mechanism, studied by DFT revealed a redox-based mechanism where the C-Se coupling is enabled by the reductive elimination of the cyclometalated Au(III) species into Au(I).


Assuntos
Cistina/análogos & derivados , Compostos Organosselênicos , Selênio , Animais , Bovinos , Ouro/química , Peptídeos , Glutationa Peroxidase/metabolismo , Selenocisteína/química
2.
Anal Bioanal Chem ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079983

RESUMO

The complete characterization of selenium-enriched yeast in terms of selenium species has been the goal of extensive research for the last three decades. This contribution addresses the two outstanding questions: the mass balance of the identified and reported selenium species and the possible presence of inorganic selenium. For this purpose, four procedures have been designed combining, in diverse order, the principal steps of selenium speciation analysis in Se-rich yeast: extraction of the Se-metabolome, derivatization of cysteine and Se-cysteine (SeCys) residues, proteolysis, and definitive Se recovery using SDS extraction, followed by mineralization. The recovery of selenium in each step and its speciation were controlled by ICP MS and by reversed-phase HPLC-ICP MS, respectively. The study, carried out for the SELM-1 reference material, demonstrated the presence of about 10% of inorganic selenium and a serious risk of losses of SeCys during derivatization and proteolysis. As result of our work, we postulate the following values for SELM-1: Se-metabolome fraction (SeMF) 14.8 ± 0.7%; total selenomethionine (SeMet) 66.2 ± 2.7% (including ca. 1.5% SeMet present in the SeMF); total SeCys 12.5 ± 1.5% (including 2% of SeCys present in the Se-MF); total inorganic selenium 9.7 ± 1.7%, accounting for > 99.8% of the selenium.

3.
Anal Bioanal Chem ; 416(11): 2819-2833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244050

RESUMO

The reactivity of thioredoxin (Trx1) with the Au(I) drug auranofin (AF) and two therapeutic N-heterocyclic carbene (NHC)2-Au(I) complexes (bis [1-methyl-3-acridineimidazolin-2-ylidene]gold(I) tetrafluoroborate (Au3BC) and [1,3-diethyl-4,5-bis(4methoxyphenyl)imidazol-2-ylidene]gold(I) (Au4BC)) was investigated. Direct infusion (DI) electrospray ionization (ESI) mass spectrometry (MS) allowed information on the structure, stoichiometry, and kinetics of formation of Trx-Au adducts. The fragmentation of the formed adducts in the gas phase gave insights into the exact Au binding site within the protein, demonstrating the preference for Trx1 Cys32 or Cys35 of AF or the (NHC)2-Au(I) complex Au3BC, respectively. Reversed-phase HPLC suffered from the difficulty of elution of gold compounds, did not preserve the formed metal-protein adducts, and favored the loss of ligands (phosphine or NHC) from Au(I). These limitations were eliminated by capillary electrophoresis (CE) which enabled the separation of the gold compounds, Trx1, and the formed adducts. The ICP-MS/MS detection allowed the simultaneous quantitative monitoring of the gold and sulfur isotopes and the determination of the metallation extent of the protein. The hyphenation of the mentioned techniques was used for the analysis of Trx1-Au adducts for the first time.


Assuntos
Ouro , Espectrometria de Massas em Tandem , Ouro/química , Auranofina , Espectrometria de Massas por Ionização por Electrospray , Compostos de Ouro/química , Eletroforese Capilar , Fatores Imunológicos , Cromatografia Líquida , Tiorredoxinas
4.
Anal Chim Acta ; 1301: 342485, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553115

RESUMO

BACKGROUND: Ag-Au bimetallic nanoparticles (BNPs), synthesized by using citrate reduction of Ag and Au ions, were used as sensor for detection of Co2+. In order to optimize sensing performance, it is necessary to control the particle size and size distribution of the original Ag-Au BNPs. Therefore, analytical methods based on the use of single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) and flow-field flow fractionation (FlFFF)-ICP-MS were developed to track the signal of Ag and Au in bimetallic nanoparticles at each step of the procedure: BNP synthesis, aggregation and sensing in order to understand the sensing mechanism. To better understand colorimetric sensing of Co2+ using Ag-Au BNPs, various solution mixtures were analyzed by using SP-ICP-MS and FlFFF-ICP-MS. RESULTS: SP-ICP-MS provided the information on the core size, size distribution and particle number concentration, as well as the heterogeneity of the particles synthesized by using various citrate concentrations and metal ratios. FlFFF-ICP-MS offered the information on hydrodynamic size as well as the signal intensity ratio of Ag and Au in BNPs and for the understanding of the aggregation of BNPs arising from the [Co(II)(en)3]2+ complex surrounding the surface of the BNPs. Under optimum sensing condition, the use of SP-ICP-MS for BNPs assisted detection of Co2+ improved the sensitivity of Co2+ determination by 20-fold in comparison with the conventional spectrophotometric analysis. SIGNIFICANCE: The information obtained from SP-ICP-MS and FlFFF-ICP-MS can be combinedly used to understand sensing mechanism and to select the best condition for synthesis of BNPs used as sensor. This study illustrates the usefulness of SP-ICP-MS and FlFFF-ICP-MS in the nanoparticle-based sensor development research area.

5.
J Inorg Biochem ; 252: 112479, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218139

RESUMO

Solution interactions of three organomercury compounds, i.e., methylmercury chloride, thimerosal and phenylmercury acetate, with a group of biochemically relevant proteins, namely cytochrome c (Cyt c), ribonuclease A (RNase A), carbonic anhydrase I (hCA I), superoxide dismutase (SOD), and serum albumin (HSA), were investigated using an established ESI MS approach. Temporal analysis of sample aliquots provided insight into the binding kinetics, while comparative analysis of the obtained mass spectra disclosed adduct formation of each mercurial with the tested proteins and the relative abundance of the species. The three organomercurials bind, exclusively and tightly, to free cysteine residues as no binding was observed in the case of proteins lacking such groups. hCA I, SOD and HSA formed distinct mercury adducts, preserving the Hg bound alkyl/aryl ligands; yet, the three organomercurials displayed significant differences in reactivity in relation to their chemical structure. The investigation was then extended to analyze the reactions with the C-terminal dodecapeptide of the enzyme human thioredoxin reductase, which contains a characteristic selenol-thiol moiety: tight Hg binding was observed. Notably, this peptide was able to remove effectively and completely the alkyl/aryl ligands of the three tested organomercurials; this behavior may be relevant to the detoxification mechanism of organomercurials in mammals. Finally, a competition experiment was carried out to establish whether protein bound mercury centers may be displaced by other competing metals. Interestingly, and quite unexpectedly, we observed that a protein bound mercury fragment may be partially displaced from its coordination site in hCA I by the medicinal gold compound auranofin.


Assuntos
Mercúrio , Compostos Organomercúricos , Animais , Humanos , Compostos Organomercúricos/metabolismo , Peptídeos , Ouro , Superóxido Dismutase , Mamíferos/metabolismo
6.
Pharmaceutics ; 16(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399332

RESUMO

The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, has been explored. One approach to overcome these limitations is the modification of traditional Pt(II) drugs to obtain new molecules with an improved pharmacological profile, such as Pt(IV) prodrugs. The design, synthesis, and characterization of two novel Pt(IV) prodrugs based on oxaliplatin bearing the anticancer drugs gemcitabine or capecitabine in the axial positions have been reported. These complexes were able to dissociate into their constituents to promote cell death and induce apoptosis and cell cycle blockade in a representative colorectal cancer cell model. Specifically, the complex bearing gemcitabine resulted in being the most active on the HCT116 colorectal cancer cell line with an IC50 value of 0.49 ± 0.04. A pilot study on the encapsulation of these complexes in biocompatible PLGA-PEG nanoparticles is also included to confirm the retention of the pharmacological properties and cellular drug uptake, opening up to the possible delivery of the studied complexes through their nanoformulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA